Dario Doller

Learn More
Group III metabotropic glutamate (mGlu) receptors are localized in presynaptic terminals within basal ganglia (BG) circuitry that become hyperactive due to dopamine depletion in Parkinson's disease (PD). For this reason, group III mGlu receptors, in particular mGlu4, have been considered as key strategic targets for non-dopaminergic pharmacological(More)
BACKGROUND AND PURPOSE Because agonists at metabotropic glutamate receptors exert beneficial effects in schizophrenia, we have assessed the actions of Lu AF21934 and Lu AF32615, two chemically distinct, selective and brain-penetrant positive allosteric modulators (PAMs) of the mGlu4 receptor, in several tests reflecting positive, negative and cognitive(More)
Metabotropic glutamate 4 (mGlu4) receptor is a promising target for the treatment of motor deficits in Parkinson's disease (PD). This is due in part to its localization at key basal ganglia (BG) synapses that become hyperactive in this pathology, particularly striatopallidal synapses. In this context, mGlu4 receptor activation using either orthosteric(More)
In this review, we aim to present, discuss and clarify our current understanding regarding the prediction of possible antipsychotic effects of metabotropic glutamate (mGlu) receptor ligands. The number of preclinical trials clearly indicates, that this group of compounds constitutes an excellent alternative to presently used antipsychotic therapy, being(More)
The design, synthesis, and structure-activity relationships of a novel series of pyrazines, acting as corticotropin releasing factor-1 (CRF-1) receptor antagonists, are described. Synthetic methodologies were developed to prepare a number of substituted pyrazine cores utilizing regioselective halogenation and chemoselective derivatization. Noteworthy, an(More)
LSP1-2111 is a group III metabotropic glutamate receptor agonist with preference toward the mGlu4 receptor subtype. This compound has been extensively used as a tool to explore the pharmacology of mGlu4 receptor activation in preclinical animal behavioral models. However, the blood-brain barrier penetration of this amino acid derivative has never been(More)
Structurally novel thrombin receptor (protease activated receptor 1, PAR-1) antagonists based on the natural product himbacine are described. The prototypical PAR-1 antagonist 55 showed a Ki of 2.7 nM in the binding assay, making it the most potent PAR-1 antagonist reported. 55 was highly active in several functional assays, showed excellent oral(More)
Protease activated receptor-1 (PAR-1), also known as thrombin receptor, is present in a variety of cell types such as platelets and endothelial cells. PAR-1 is proteolytically activated by thrombin by cleavage at its extracellular domain, unmasking a new amino terminus, which internally binds to the proximal receptor, eliciting cellular activation.(More)
Previous studies demonstrated that the Group III mGlu receptor-selective orthosteric agonist, LSP1-2111 produced anxiolytic- but not antidepressant-like effects upon peripheral administration. Herein, we report the pharmacological actions of Lu AF21934, a novel, selective, and brain-penetrant positive allosteric modulator (PAM) of the mGlu(4) receptor in(More)
Diverse preclinical studies suggest the potential therapeutic utility of the modulation of the glutamatergic system in brain via metabotropic glutamate (mGlu) receptors. Lu AF21934, a positive allosteric modulator of the mGlu4 receptor, was previously shown to reverse behavioral phenotypes in animal models thought to mimic positive, negative, and cognitive(More)