Dario Coletti

Learn More
Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the(More)
Subcellular targeting of the components of the cAMP-dependent pathway is thought to be essential for intracellular signaling. Here we have identified a novel protein, named myomegalin, that interacts with the cyclic nucleotide phosphodiesterase PDE4D, thereby targeting it to particulate structures. Myomegalin is a large 2,324-amino acid protein mostly(More)
Muscle wasting (cachexia) is an incurable complication associated with chronic infection and cancers that leads to an overall poor prognosis for recovery. Tumor necrosis factor-alpha (TNFalpha) is a key inflammatory cytokine associated with cachexia. TNFalpha inhibits myogenic differentiation and skeletal muscle regeneration through downstream effectors of(More)
BACKGROUND Epidemiologic data revealed increased brain tumor incidence in workers exposed to magnetic fields (MFs), raising concerns about the possible link between MF exposure and cancer. However, MFs seem to be neither mutagenic nor tumorigenic. The mechanism of their tumorigenic effect has not been elucidated. METHODS To evaluate the interference of(More)
Skeletal muscle is susceptible to injury following trauma, neurological dysfunction, and genetic diseases. Skeletal muscle homeostasis is maintained by a pronounced regenerative capacity, which includes the recruitment of stem cells. Chronic exposure to tumor necrosis factor-alpha (TNF) triggers a muscle wasting reminiscent of cachexia. To better understand(More)
Recent studies strengthen the belief that physical activity as a behavior has a genetic basis. Screening wheel-running behavior in inbred mouse strains highlighted differences among strains, showing that even very limited genetic differences deeply affect mouse behavior. We extended this observation to substrains of the same inbred mouse strain, that is,(More)
Chronic disease states are associated with elevated levels of inflammatory cytokines that have been demonstrated to lead to severe muscle wasting. A mechanistic understanding of muscle wasting is hampered by limited in vivo cytokine models which can be applied to emerging mouse mutants as they are generated. We developed a simple and novel approach to(More)
Fabio Naro,1 Vania De Arcangelis,1 Dario Coletti,1 Mario Molinaro,1 Bianca Zani,2 Stefano Vassanelli,3 Carlo Reggiani,3 Anna Teti,2 and Sergio Adamo1 1Dipartimento di Istologia ed Embriologia Medica, Università “La Sapienza,” 00161 Rome; 2Dipartimento di Medicina Sperimentale, Università di L’Aquila, 60710 L’Aquila; and 3Dipartimento di Anatomia e(More)
In the pursuit of a transplantable construct for the replacement of large skeletal muscle defects arising from traumatic or pathological conditions, several attempts have been made to obtain a highly oriented, vascularized and functional skeletal muscle. Acellular scaffolds derived from organ decellularization are promising, widely used biomaterials for(More)
The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an(More)