Dario A. Arena

Learn More
We have demonstrated nonlinear cross-phase modulation in electro-optic crystals using intense, single-cycle terahertz (THz) radiation. Individual THz pulses, generated by coherent transition radiation emitted by subpicosecond electron bunches, have peak energies of up to 100 microJ per pulse. The time-dependent electric field of the intense THz pulses(More)
We report the formation of a novel ferromagnetic state in the antiferromagnet BiFeO3 at the interface with ferromagnet La(0.7)Sr(0.3)MnO3. Using x-ray magnetic circular dichroism at Mn and Fe L(2,3) edges, we discovered that the development of this ferromagnetic spin structure is strongly associated with the onset of a significant exchange bias. Our results(More)
Only three elements are ferromagnetic at room temperature: the transition metals iron, cobalt and nickel. The Stoner criterion explains why iron is ferromagnetic but manganese, for example, is not, even though both elements have an unfilled 3d shell and are adjacent in the periodic table: according to this criterion, the product of the density of states and(More)
We present an unreported magnetic configuration in epitaxial La(1-x) Sr(x) MnO3 (x ∼ 0.3) (LSMO) films grown on strontium titanate (STO). X-ray magnetic circular dichroism indicates that the remanent magnetic state of thick LSMO films is opposite to the direction of the applied magnetic field. Spectroscopic and scattering measurements reveal that the(More)
The high-frequency dynamics of mode-coupled magnetic vortices have generated great interest for spintronic technologies, such as spin-torque nano-oscillators. While the spectroscopic characteristics of vortex oscillators have been reported, direct imaging of driven coupled magnetic quasi-particles is essential to the fundamental understanding of the(More)
We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique(More)
Spin-transfer torques offer great promise for the development of spin-based devices. The effects of spin-transfer torques are typically analysed in terms of adiabatic and non-adiabatic contributions. Currently, a comprehensive interpretation of the non-adiabatic term remains elusive, with suggestions that it may arise from universal effects related to(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The transition between Kondo and Coulomb blockade effects in discontinuous(More)
The internal phase profile of electromagnetic radiation determines many functional properties of metal, oxide or semiconductor heterostructures. In magnetic heterostructures, emerging spin electronic phenomena depend strongly upon the phase profile of the magnetic field H at gigahertz frequencies. Here we demonstrate nanometre-scale, layer-resolved(More)
Ferromagnetic nanoparticles in the 10–14 nm size range are examined for their size and interaction dependent magnetic properties. From X-ray magnetic circular dichroism the orbital-to-spin magnetic moment ratio is determined and found to decrease significantly with particle size. This is in accordance with previous complementary studies on smaller particles(More)