Learn More
PURPOSE The Ras-Raf-mitogen-activated protein kinase kinase (MEK) pathway is overactive in many human cancers and is thus a target for novel therapeutics. We have developed a highly potent and selective inhibitor of MEK1/2. The purpose of these studies has been to show the biological efficacy of ARRY-142886 (AZD6244) in enzymatic, cellular, and animal(More)
Tumor cells extensively utilize the pentose phosphate pathway for the synthesis of ribose. Transketolase is a key enzyme in this pathway and has been suggested as a target for inhibition in the treatment of cancer. In a pharmacodynamic study, nude mice with xenografted HCT-116 tumors were dosed with 1 ('N3'-pyridyl thiamine';(More)
Numerous oncogenic mutations occur within the BRAF kinase domain (BRAF(KD)). Here we show that stable BRAF-MEK1 complexes are enriched in BRAF(WT) and KRAS mutant (MT) cells but not in BRAF(MT) cells. The crystal structure of the BRAF(KD) in a complex with MEK1 reveals a face-to-face dimer sensitive to MEK1 phosphorylation but insensitive to BRAF(More)
Inhibition of the thiamine-utilizing enzyme transketolase (TK) has been linked with diminished tumor cell proliferation. Most thiamine antagonists have a permanent positive charge on the B-ring, and it has been suggested that this charge is required for diphosphorylation by thiamine pyrophosphokinase (TPPK) and binding to TK. We sought to make neutral(More)
OBJECTIVE Thousands of Americans are prescribed cervical orthoses each year. These orthoses restrict motion, which may influence the patient's driving performance. No legal restrictions exist that prohibit patients from wearing cervical orthoses while driving. No study addressing this issue has been published to date. Thus, we sought to assess the effects(More)
A hallmark of Alzheimer's disease is the brain deposition of amyloid beta (Aβ), a peptide of 36-43 amino acids that is likely a primary driver of neurodegeneration. Aβ is produced by the sequential cleavage of APP by BACE1 and γ-secretase; therefore, inhibition of BACE1 represents an attractive therapeutic target to slow or prevent Alzheimer's disease.(More)
In an attempt to increase selectivity vs Cathepsin D (CatD) in our BACE1 program, a series of 1,3,4,4a,10,10a-hexahydropyrano[4,3-b]chromene analogues was developed. Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Using(More)
A series of 2,3,4,4a,10,10a-hexahydropyrano[3,2-b]chromene analogs was developed that demonstrated high selectivity (>2000-fold) for BACE1 vs Cathepsin D (CatD). Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Guided by(More)
  • 1