Learn More
Gramicidin S (GS) is a 10-residue cyclic beta-sheet peptide with lytic activity against the membranes of both microbial and human cells, i.e. it possesses little to no biologic specificity for either cell type. Structure-activity studies of de novo-designed 14-residue cyclic peptides based on GS have previously shown that higher specificity against(More)
The cyclic beta-sheet structure possessed by the 10-residue antibiotic peptide gramicidin S was taken as the structural framework for the de novo design of biologically active peptides with membrane-active properties. We have shown from previous studies that gramicidin S is a broad-spectrum antibiotic effective against Gram-positive bacteria, Gram-negative(More)
In the present study we have utilized the structural framework of the analog GS14K4 (cyclo(VKLd-KVd-YPL KVKLd-YP, where d denotes a d-amino acid)), to examine the role of hydrophobicity in microbial activity and specificity. The hydrophobicity of GS14K4 was systematically altered by residue replacements in the hydrophobic sites of the molecule to produce a(More)
Biophysical techniques such as size-exclusion chromatography, sedimentation equilibrium analytical ultracentrifugation, and non-denaturing gel electrophoresis are the classical methods for determining the self-association of molecules into dimers, trimers, or other higher order species. However, these techniques usually require high (mg/ml) loading(More)
The amino acid residues comprising the interface between strands of the coiled-coil motif are usually hydrophobic and make a major contribution to coiled-coil folding and stability. However, in some cases the presence of excellent hydrophobic residues at the coiled-coil interface is insufficient for folding. It has been proposed that a "consensus trigger(More)
We determined the 1.17 A resolution X-ray crystal structure of a hybrid peptide based on sequences from coiled-coil regions of the proteins GCN4 and cortexillin I. The peptide forms a parallel homodimeric coiled-coil, with C(alpha) backbone geometry similar to GCN4 (rmsd value 0.71 A). Three stabilizing interactions have been identified: a unique hydrogen(More)
  • 1