Dara Ghahremani

Learn More
Affective experience has been described in terms of two primary dimensions: intensity and valence. In the human brain, it is intrinsically difficult to dissociate the neural coding of these affective dimensions for visual and auditory stimuli, but such dissociation is more readily achieved in olfaction, where intensity and valence can be manipulated(More)
Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with(More)
High-level visual cortex in humans includes functionally defined regions that preferentially respond to objects, faces and places. It is unknown how these regions develop and whether their development relates to recognition memory. We used functional magnetic resonance imaging to examine the development of several functionally defined regions including(More)
The social motivation hypothesis of autism posits that infants with autism do not experience social stimuli as rewarding, thereby leading to a cascade of potentially negative consequences for later development. While possible downstream effects of this hypothesis such as altered face and voice processing have been examined, there has not been a direct(More)
Repetition priming refers to enhanced or biased performance with repeatedly presented stimuli. Modality-specific perceptual repetition priming has been demonstrated behaviorally for both visually and auditorily presented stimuli. In functional neuroimaging studies, repetition of visual stimuli has resulted in reduced activation in the visual cortex, as well(More)
Genetic studies are rapidly identifying variants that shape risk for disorders of human cognition, but the question of how such variants predispose to neuropsychiatric disease remains. Noninvasive human brain imaging allows assessment of the brain in vivo, and the combination of genetics and imaging phenotypes remains one of the only ways to explore(More)
Impulsive behavior is thought to reflect a traitlike characteristic that can have broad consequences for an individual's success and well-being, but its neurobiological basis remains elusive. Although striatal dopamine D₂-like receptors have been linked with impulsive behavior and behavioral inhibition in rodents, a role for D₂-like receptor function in(More)
The ability to flexibly respond to changes in the environment is critical for adaptive behavior. Reversal learning (RL) procedures test adaptive response updating when contingencies are altered. We used functional magnetic resonance imaging to examine brain areas that support specific RL components. We compared neural responses to RL and initial learning(More)
Current strategies for thresholding statistical parametric maps in neuroimaging include control of the family-wise error rate, control of the false discovery rate (FDR) and thresholding of the posterior probability of a voxel being active given the data, the latter derived from a mixture model of active and inactive voxels. Correct inference using any of(More)
A recently-derived algorithm for performing Independent Component Analysis (ICA) (Bell & Sejnowski, 1995) based on information maximization is a new information-theoretic approach to the problem of separating multichannel electroencephalographic (EEG) or magnetoencephalographic (MEG) data into temporally independent and spatially stationary sources (Makeig(More)