Dapo Akingbade

Learn More
Oxidative damage is considered a major contributing factor to genetic diseases including cancer. Our laboratory is evaluating endogenously formed DNA adducts as genomic biomarkers of oxidative injury. Recent efforts have focused on investigating the metabolic stability of adducts in vitro and in vivo. Here, we demonstrate that the base adduct, M1G,(More)
Non-invasive strategies for the analysis of endogenous DNA damage are of interest for the purpose of monitoring genomic exposure to biologically produced chemicals. We have focused our research on the biological processing of DNA adducts and how this may impact the observed products in biological matrixes. Preliminary research has revealed that(More)
Oxidative stress triggers DNA and lipid peroxidation, leading to the formation of electrophiles that react with DNA to form adducts. A product of this pathway, (3-(2'-deoxy-β-d-erythro-pentofuranosyl)-pyrimido[1,2-α]purine-10(3H)-one), or M(1)dG, is mutagenic in bacterial and mammalian cells and is repaired by the nucleotide excision repair pathway. In(More)
The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis(More)
  • 1