Learn More
Genetic variation influences gene expression, and this variation in gene expression can be efficiently mapped to specific genomic regions and variants. Here we have used gene expression profiling of Epstein-Barr virus-transformed lymphoblastoid cell lines of all 270 individuals genotyped in the HapMap Consortium to elucidate the detailed features of genetic(More)
Understanding the consequences of regulatory variation in the human genome remains a major challenge, with important implications for understanding gene regulation and interpreting the many disease-risk variants that fall outside of protein-coding regions. Here, we provide a direct window into the regulatory consequences of genetic variation by sequencing(More)
To elucidate gene function on a global scale, we identified pairs of genes that are coexpressed over 3182 DNA microarrays from humans, flies, worms, and yeast. We found 22,163 such coexpression relationships, each of which has been conserved across evolution. This conservation implies that the coexpression of these gene pairs confers a selective advantage(More)
Much of the knowledge about cell differentiation and function in the immune system has come from studies in mice, but the relevance to human immunology, diseases, and therapy has been challenged, perhaps more from anecdotal than comprehensive evidence. To this end, we compare two large compendia of transcriptional profiles of human and mouse immune cell(More)
Dengue is the most prevalent mosquito-borne viral disease in humans, and the lack of early prognostics, vaccines, and therapeutics contributes to immense disease burden. To identify patterns that could be used for sequence-based monitoring of the antibody response to dengue, we examined antibody heavy-chain gene rearrangements in longitudinal peripheral(More)
Genetics aims to understand the relation between genotype and phenotype. However, because complete deletion of most yeast genes ( approximately 80%) has no obvious phenotypic consequence in rich medium, it is difficult to study their functions. To uncover phenotypes for this nonessential fraction of the genome, we performed 1144 chemical genomic assays on(More)
Support vector machines have met with significant success in numerous real-world learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool-based active learning. Instead of using a randomly selected training(More)
Much of a cell's activity is organized as a network of interacting modules: sets of genes coregulated to respond to different conditions. We present a probabilistic method for identifying regulatory modules from gene expression data. Our procedure identifies modules of coregulated genes, their regulators and the conditions under which regulation occurs,(More)
Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20-30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their(More)