Learn More
In typical classification tasks, we seek a function which assigns a label to a single object. Kernel-based approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ability to use high-dimensional feature spaces, and from(More)
The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter-based algorithms, for example, require time quadratic in the(More)
Support vector machines have met with significant success in numerous real-world learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool-based active learning. Instead of using a randomly selected training(More)
Proceedings of IJCAI 2003 In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM which overcomes important deficiencies of the original algorithm. We prove convergence of this new algorithm for linear SLAM(More)
In this paper, we examine a method for feature subset selection based on Information Theory. Initially, a framework for deening the theoretically optimal, but computationally intractable , method for feature subset selection is presented. We show that our goal should be to eliminate a feature if it gives us little or no additional information beyond that(More)
High-level, or holistic, scene understanding involves reasoning about objects, regions, and the 3D relationships between them. This requires a representation above the level of pixels that can be endowed with high-level attributes such as class of object/region, its orientation, and (rough 3D) location within the scene. Towards this goal, we propose a(More)
We introduce the SCAPE method (Shape Completion and Animation for PEople)---a data-driven method for building a human shape model that spans variation in both subject shape and pose. The method is based on a representation that incorporates both articulated and non-rigid deformations. We learn a <i>pose deformation model</i> that derives the non-rigid(More)