Dapeng Jing

Learn More
Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the(More)
STM studies reveal that irregular non-equilibrium two-dimensional AI islands form during deposition of AI on NiAI(IIO) at 300 K. These structures reflect the multiple adsorption sites and diffusion paths available for AI adatoms on the binary alloy surface, as well as the details of inhibited edge diffusion and detachment-attachment kinetics of AI adatoms(More)
Surface reactions involving atomic oxygen have attracted much attention in astrophysics and astrochemistry, but two of the most fundamental surface processes, desorption and diffusion, are not well understood. We studied diffusion and desorption of atomic oxygen on or from amorphous silicate surfaces under simulated interstellar conditions using a(More)
We studied the formation of deuterated water on an amorphous silicate surface held at low temperature (10 K < T < 40 K). The surface is first characterized by using Ar(+) ion bombardment, and preferential sputtering of oxygen is found. Sputtering creates oxygen vacancies in the surface region that can be filled by deposition of atomic oxygen. The conditions(More)
Scanning tunneling microscopy studies reveal that two-dimensional nanoscale Ni islands formed by deposition of Ni on NiAl(110) between 200-400 K exhibit far-from-equilibrium growth shapes which change systematically with temperature. Island structure reflects the two types of adsorption sites available for Ni adatoms, and island shapes are controlled by the(More)
Inkjet printed graphene (IPG) has recently shown tremendous promise in reducing the cost and complexity of graphene circuit fabrication. Herein we demonstrate, for the first time, the fabrication of an ion selective electrode (ISE) with IPG. A thermal annealing process in a nitrogen ambient environment converts the IPG into a highly conductive electrode(More)
Confinement of electrons can occur in metal islands or in continuous films grown heteroepitaxially upon a substrate of a different metal or on a metallic alloy. Associated quantum size effects (QSE) can produce a significant height-dependence of the surface free energy for nanoscale thicknesses of up to 10-20 layers. This may suffice to induce height(More)
Facile nucleation and growth of bilayer Ag(110) islands on NiAl(110) is observed by STM for Ag deposition at temperatures as low as 127 K. Density functional theory analysis for supported Ag films determines adatom adsorption energies (which favor bilayer islands), interaction energies, and diffusion barriers. Analysis of an atomistic lattice-gas model(More)
  • 1