Danzhi Huang

Learn More
The chromatin-associated enzyme PARP1 has previously been suggested to ADP-ribosylate histones, but the specific ADP-ribose acceptor sites have remained enigmatic. Here, we show that PARP1 covalently ADP-ribosylates the amino-terminal histone tails of all core histones. Using biochemical tools and novel electron transfer dissociation mass spectrometric(More)
The linear interaction energy (LIE) method is combined with energy minimization and finite-difference Poisson calculation of electrostatic solvation for the estimation of the absolute free energy of binding. A predictive accuracy of about 1.0 kcal/mol is obtained for 13 and 29 inhibitors of beta-secretase (BACE) and HIV-1 protease (HIV-1 PR), respectively.(More)
UNLABELLED MOTIVATION AND METHOD: Small-molecule inhibitors targeting the adenosine triphosphate (ATP) binding pocket of the catalytic domain of protein kinases have potential to become drugs devoid of (major) side effects, particularly if they bind selectively. Here, the sequences of the 518 human kinases are first mapped onto the structural alignment of(More)
The linear interaction energy method with continuum electrostatics (LIECE) is evaluated in depth on five kinases. The two multiplicative coefficients for the van der Waals energy and electrostatic free energy are shown to be transferable among different kinases. Moreover, good enrichment factors are obtained for a library of 40375 diverse compounds seeded(More)
Prions cause transmissible spongiform encephalopathies for which no treatment exists. Prions consist of PrP(Sc), a misfolded and aggregated form of the cellular prion protein (PrP(C)). We explore the antiprion properties of luminescent conjugated polythiophenes (LCPs) that bind and stabilize ordered protein aggregates. By administering a library of(More)
In drug discovery, the occurrence of false positives is a major hurdle in the search for lead compounds that can be developed into drugs. A small-molecular-weight compound that inhibits dengue virus protease at low micromolar levels was identified in a screening campaign. Binding to the enzyme was confirmed by isothermal titration calorimetry (ITC) and(More)
We review our computational tools for high-throughput screening by fragment-based docking of large collections of small molecules. Applications to six different enzymes, four proteases, and two protein kinases, are presented. Remarkably, several low-micromolar inhibitors were discovered in each of the high-throughput docking campaigns. Probable reasons for(More)
Bromodomains are protein modules that selectively recognize histones by binding to acetylated lysines. Here, we have carried out multiple molecular dynamics simulations of 20 human bromodomains to investigate the flexibility of their binding site. Some bromodomains show alternative side chain orientations of three evolutionarily conserved residues: the Asn(More)
Several experimental and computational approaches to fragment-based drug design have been developed during the past 15 years. The experimental methods are still limited in their temporal and spatial resolution, while the computational techniques suffer from insufficient accuracy, particularly in the evaluation of binding affinity. Recently, molecular(More)
BACKGROUND The non-structural 3 protease (NS3pro) is an essential flaviviral enzyme and therefore one of the most promising targets for drug development against West Nile virus (WNV) and dengue infections. METHODOLOGY In this work, a small-molecule inhibitor of the WNV NS3pro has been identified by automatic fragment-based docking of about 12000 compounds(More)