Danuta Leszczynska

Learn More
It is expected that the number and variety of engineered nanoparticles will increase rapidly over the next few years, and there is a need for new methods to quickly test the potential toxicity of these materials. Because experimental evaluation of the safety of chemicals is expensive and time-consuming, computational methods have been found to be efficient(More)
The production of nanomaterials increases every year exponentially and therefore the probability these novel materials that they could cause adverse outcomes for human health and the environment also expands rapidly. We proposed two types of mechanisms of toxic action that are collectively applied in a nano-QSAR model, which provides governance over the(More)
For six random splits, one-variable models of rat toxicity (minus decimal logarithm of the 50% lethal dose [pLD50], oral exposure) have been calculated with CORAL software (http://www.insilico.eu/coral/). The total number of considered compounds is 689. New additional global attributes of the simplified molecular input line entry system (SMILES) have been(More)
The most significant achievements and challenges relating to an application of quantitative structure-activity relationship (QSAR) approach in the risk assessment of nanometer-sized materials are highlighted. Recent advances are discussed in the context of "classical" QSAR methodology. The possible ways for the structural characterization of compounds(More)
A new method of cancer treatment is proposed, based on the unique magnetic properties of ferritin iron core which, in alternating magnetic field of frequency approximately 100 kHz, is easily heated to temperatures sufficiently high to destroy neoplastic cells containing an excess of this protein, without damaging the normal cells.
Quantitative structure-property/activity relationships (QSPRs/QSARs) are a tool to predict various endpoints for various substances. The "classic" QSPR/QSAR analysis is based on the representation of the molecular structure by the molecular graph. However, simplified molecular input-line entry system (SMILES) gradually becomes most popular representation of(More)
Convenient to apply and available on the Internet software CORAL (http://www.insilico.eu/CORAL) has been used to build up quantitative structure-activity relationships (QSAR) for prediction of cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (minus logarithm of concentration for 50% effect pEC50). In this study six random splits of the(More)
We present the results of the QSAR/QSPR study on the degradation rate constants of 78 aromatic compounds by the hydroxyl radicals in water. A genetic algorithm and multiple regression analysis were applied to select the descriptors and to generate the correlation models. Additionally to DRAGON descriptors, the parameters from quantum-chemical calculations(More)
On the basis of the physical properties of magnetic fluids a new technique of whole-body hyperthermia is proposed. Subdomain dextran stabilized magnetite particles injected into the blood-stream can be efficiently heated using an external high-frequency magnetic field, which allows rapid and controllable delivery of heat to the patient's blood, which may be(More)
Fullerene and its derivatives have potential antiviral activity due to their specific binding interactions with biological molecules. In this study fullerene derivatives were investigated by the synergic combination of three approaches: quantum-mechanical calculations, protein-ligand docking and quantitative structure-activity relationship methods. The(More)