Danny Tholen

Learn More
The relationship between chloroplast arrangement and diffusion of CO(2) from substomatal cavities to the chloroplast stroma was investigated in Arabidopsis thaliana. Chloroplast position was manipulated by varying the amount of blue light and by cytochalasin D (CytD) treatment. We also investigated two chloroplast positioning mutants. Chloroplast(More)
The CO(2) concentration at the site of carboxylation inside the chloroplast stroma depends not only on the stomatal conductance, but also on the conductance of CO(2) between substomatal cavities and the site of CO(2) fixation. This conductance, commonly termed mesophyll conductance (g(m) ), significantly constrains the rate of photosynthesis. Here we(More)
Photosynthesis is limited by the conductance of carbon dioxide (CO(2)) from intercellular spaces to the sites of carboxylation. Although the concept of internal conductance (g(i)) has been known for over 50 years, shortcomings in the theoretical description of this process may have resulted in a limited understanding of the underlying mechanisms. To tackle(More)
The gaseous plant hormone ethylene modulates many internal processes and growth responses to environmental stimuli. Ethylene has long been recognized as a growth inhibitor, but evidence is accumulating that ethylene can also promote growth. Therefore, the concept of ethylene as a general growth inhibitor needs reconsideration: a close examination of recent(More)
In order to ensure the cooperative function with the photosynthetic system, the mitochondrial respiratory chain needs to flexibly acclimate to a fluctuating light environment. The non-phosphorylating alternative oxidase (AOX) is a notable respiratory component that may support a cellular redox homeostasis under high-light (HL) conditions. Here we report the(More)
Carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the interconversion of CO2 and HCO3 - and plays an important role in photosynthetic carbon assimilation. We report that the effect of manipulating AtβCA6 expression on the growth and biomass accumulation of Arabidopsis thaliana shows that AtβCA6 was expressed in mitochondria. Overexpression of AtβCA6 increased(More)
Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade(More)
NRT1.1 is a putative nitrate sensor and is involved in many nitrate-dependent responses. On the other hand, a nitrate-independent function of NRT1.1 has been implied, but the clear-cut evidence is unknown. We found that NRT1.1 mutants showed enhanced tolerance to concentrated ammonium as sole N source in Arabidopsis thaliana. This unique phenotype was not(More)
Growth in population, decrease in arable land area, and change in climate are endangering our food security. Precision agriculture has the potential to increase crop productivity thorough tailored agricultural practices for different growing areas. Many models of crops and agro-ecosystems capable of predicting interaction between plants and environments(More)