Danny Fuller

Learn More
We used microarrays carrying most of the genes that are developmentally regulated in Dictyostelium to discover those that are preferentially expressed in prestalk cells. Prestalk cells are localized at the front of slugs and play crucial roles in morphogenesis and slug migration. Using whole-mount in situ hybridization, we were able to verify 104 prestalk(More)
Evolutionarily divergent organisms often share developmental anatomies despite vast differences between their genome sequences. The social amoebae Dictyostelium discoideum and Dictyostelium purpureum have similar developmental morphologies although their genomes are as divergent as those of man and jawed fish. Here we show that the anatomical similarities(More)
During Dictyostelium development, prespore cells secrete acyl-CoA binding protein (AcbA). Upon release, AcbA is processed to generate a peptide called spore differentiation factor-2 (SDF-2), which triggers terminal differentiation of spore cells. We have found that cells lacking Golgi reassembly stacking protein (GRASP), a protein attached peripherally to(More)
Expression profiles of developmental genes in Dictyostelium were determined on microarrays during development of wild type cells and mutant cells lacking either the DNA binding protein GBF or the signaling protein LagC. We found that the mutant strains developed in suspension with added cAMP expressed the pulse-induced and early adenylyl cyclase(More)
We have determined the proportions of the prespore and prestalk regions in Dictyostelium discoideum slugs by in situ hybridization with a large number of prespore- and prestalk-specific genes. Microarrays were used to discover genes expressed in a cell type-specific manner. Fifty-four prespore-specific genes were verified by in situ hybridization, including(More)
To define the role that RasC plays in motility and chemotaxis, the behavior of a rasC null mutant, rasC-, in buffer and in response to the individual spatial, temporal, and concentration components of a natural cyclic AMP (cAMP) wave was analyzed by using computer-assisted two-dimensional and three-dimensional motion analysis systems. These quantitative(More)
Chemotaxis, the chemically guided movement of cells, plays an important role in several biological processes including cancer, wound healing, and embryogenesis. Chemotacting cells are able to sense shallow chemical gradients where the concentration of chemoattractant differs by only a few percent from one side of the cell to the other, over a wide range of(More)
The cadA gene in Dictyostelium encodes the Ca2+-dependent cell adhesion molecule DdCAD-1, which is expressed soon after the initiation of development. To investigate the biological role of DdCAD-1, the cadA gene was disrupted by homologous recombination. The cadA-null cells showed a 50% reduction in EDTA-sensitive cell adhesion. The remaining EDTA-sensitive(More)
Using genome-wide microarrays, we recognized 172 genes that are highly expressed at one stage or another during multicellular development of Dictyostelium discoideum. When developed in shaken suspension, 125 of these genes were expressed if the cells were treated with cyclic AMP (cAMP) pulses at 6-min intervals between 2 and 6 h of development followed by(More)
Adhesion of motile cells to solid surfaces is necessary to transmit forces required for propulsion. Unlike mammalian cells, Dictyostelium cells do not make integrin mediated focal adhesions. Nevertheless, they can move rapidly on both hydrophobic and hydrophilic surfaces. We have found that adhesion to such surfaces can be inhibited by addition of sugars or(More)