Learn More
Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and(More)
Pacific oysters, Crassostrea gigas, have been introduced throughout much of the world, become invasive in many locations and can alter native assemblage structure, biodiversity and the distribution and abundance of other species. It is not known, however, to what extent their effects on biodiversity change as their cover increases, and how these effects may(More)
Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already(More)
Biological invasions have the potential to cause severe alterations to the biodiversity of natural ecosystems. At the same time, variation in the diversity and composition of native communities may have an important influence on the impact of invasions. Here, effects of the invasive Japanese wireweed, Sargassum muticum, were tested across a range of native(More)
A nonlinear optical spectroscopy based on degenerate four-wave mixing has made possible direct measurements of species temperature and concentration profiles through the boundary layer of a reactive plasma at atmospheric pressure. Spectra were obtained for CH and C(2) radicals over a range of conditions including those for the plasma chemical vapor(More)
Invasive species can alter the structure and functioning of ecosystems and affect the quality of the services they provide. Effects on biodiversity are well documented, but less is known about their impacts on ecosystem functioning and how these change as their populations increase. Invasive oysters, Crassostrea gigas, were added at increasing abundances to(More)
Following a pine beetle epidemic in British Columbia, Canada, we investigated the effect of fire severity on rhizosphere soil chemistry and ectomycorrhizal fungi (ECM) and associated denitrifying and nitrogen (N)-fixing bacteria in the root systems of regenerating lodgepole pine seedlings at two site types (wet and dry) and three fire severities (low,(More)
  • 1