Learn More
We present an algorithm to determine the location of a fluorescent molecule with nanometer-scale accuracy. A Fourier domain localization scheme based on zero-padded fast Fourier transform and phase gradient operators is used to obtain a powerful mathematical model for localizing the molecule without numerical fitting. Compared with conventional algorithms,(More)
We present a novel sampling imaging technique capable of performing simultaneous two-dimensional measurements of the temporal and spectral characteristics of light-emission processes by use of a specially designed streak camera. A proof-of-principle experiment was performed with a homemade multifocal multiphoton fluorescence microscope. The system was(More)
In traditional Chinese medicine, raw and processed herbs are used to treat different diseases. Suitable quality assessment methods are crucial for the discrimination between raw and processed herbs. The dried fruit of Arctium lappa L. and their processed products are widely used in traditional Chinese medicine, yet their therapeutic effects are different.(More)
This Letter proposes a method referred to as distorted grating (DG) and double-helix point spread function (DH-PSF) combination microscopy (DDCM), which is capable of multiparticle parallel localization and tracking in a transparent sample thicker than 10 μm, the thickness of cells. A special phase mask, combining the field depth extension capabilities of(More)
High-resolution visualization of short non-repetitive DNA in situ in the nuclear genome is essential for studying looping interactions and chromatin organization in single cells. Recent advances in fluorescence in situ hybridization (FISH) using Oligopaint probes have enabled super-resolution imaging of genomic domains with a resolution limit of 4.9 kb. To(More)
Two types of small photoblinking Pdots with high brightness, strong photostability, and favorable biocompatibility, are designed. Super-resolution optical fluctuation imaging is achieved using these Pdots. Imaging of subcellular structures demonstrates that these small photoblinking Pdots are outstanding probes for fast, long-term super-resolution(More)
We present a non-z-scanning multi-molecule tracking system with nano-resolution in all three dimensions and extended depth of field (DOF), which based on distorted grating (DG) and double-helix point spread function (DH-PSF) combination microscopy (DDCM). The critical component in DDCM is a custom designed composite phase mask (PM) combining the functions(More)
The double-helix point spread function (DH-PSF) microscopy has become an essential tool for nanoscale three-dimensional (3D) localization and tracking of single molecules in living cells. However, its localization precision is limited by fluorescent contrast in thick samples because the signal-to-noise ratio of the system is low due to the inherent low(More)
Semiconducting polymer dots (Pdots) represent a new class of fluorescent nanoparticles for biological applications. In this study, we investigated their size-dependent fluorescence and cellular labeling properties. We demonstrate that the polymer conformation in solution phase largely affects the polymer folding and packing during the nanoparticle(More)
If particles are too close in space, their images may be overlapped when they are observed with microscopes because of diffraction limitation, which makes them difficult to be distinguished or localized. This limitation also affects the efficiency of localization of those single-particle-localization microcopies, such as stochastic optical reconstruction(More)