Danilo Cialoni

Learn More
To evaluate the separate cardiovascular response to body immersion and increased environmental pressure during diving, 12 healthy male subjects (mean age 35.2 +/- 6.5 yr) underwent two-dimensional Doppler echocardiography in five different conditions: out of water (basal); head-out immersion while breathing (condition A); fully immersed at the surface while(More)
BACKGROUND Ultrasound lung comets (ULCs) detected by chest sonography are a simple, noninvasive, semiquantitative sign of increased extravascular lung water. Pulmonary edema may occur in elite apnea divers, possibly triggered by centralization of blood flow from the periphery to pulmonary vessels. We assessed the prevalence of ULCs in top-level breath-hold(More)
OBJECTIVE Scuba and breath-hold divers are compared to investigate whether endothelial response changes are similar despite different exposure(s) to hyperoxia. DESIGN 14 divers (nine scuba and five breath-holding) performed either one scuba dive (25m/25 minutes) or successive breath-hold dives at a depth of 20 meters, adding up to 25 minutes of immersion(More)
During maximal breath-holding six healthy elite breath-hold divers, after an initial “easy-going” phase in which cardiovascular changes resembled the so-called “diving response”, exhibited a sudden and severe rise in blood pressure during the “struggle” phase of the maneuver. These changes may represent the first tangible expression of a defense reaction,(More)
Breath-hold diving induces, in marine mammals, a reduction of cardiac output due to a decrease of both heart rate and stroke volume. Cardiovascular changes in humans during breath-hold diving are only partially known due to the technical difficulty of studying fully immersed subjects. Recently, a submersible echocardiograph has been developed, allowing a(More)
INTRODUCTION Hyperoxia causes oxidative stress. Breath-hold diving is associated with transient hyperoxia followed by hypoxia and a build-up of carbon dioxide (CO₂), chest-wall compression and significant haemodynamic changes. This study analyses variations in plasma oxidative stress markers after a series of repetitive breath-hold dives. METHODS Thirteen(More)
Decompression sickness (DCS) is a systemic disorder, assumed due to gas bubbles, but additional factors are likely to play a role. Circulating microparticles (MPs)--vesicular structures with diameters of 0.1-1.0 μm--have been implicated, but data in human divers have been lacking. We hypothesized that the number of blood-borne, Annexin V-positive MPs and(More)
INTRODUCTION After repetitive deep dives, breath-hold divers are often affected by a syndrome characterized by typical symptoms such as cough, sensation of chest constriction, blood-striated expectorate (hemoptysis) and, rarely, an overt acute pulmonary edema syndrome, often together with various degrees of dyspnea. The aim of this work is an(More)
INTRODUCTION Inert gas accumulated after multiple recreational dives can generate tissue supersaturation and bubble formation when ambient pressure decreases. We hypothesized that this could happen even if divers respected the currently recommended 24-hour pre-flight surface interval (PFSI). METHODS We performed transthoracic echocardiography (TTE) on a(More)
INTRODUCTION Flying after diving may increase decompression sickness risk (DCS), but strong evidence indicating minimum preflight surface intervals (PFSI) is missing. METHODS On return flights after a diving week on a live-aboard, 32 divers were examined by in-flight echocardiography with the following protocol: 1) outgoing flight, no previous dive; 2)(More)