Learn More
The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on shortterm tracking to date. For each participating tracker, a short description(More)
Variations in the appearance of a tracked object, such as changes in geometry/photometry, camera viewpoint, illumination, or partial occlusion, pose a major challenge to object tracking. Here, we adopt cognitive psychology principles to design a flexible representation that can adapt to changes in object appearance during tracking. Inspired by the(More)
—We address the problem of global Lyapunov stability of discrete-time recurrent neural networks (RNNs) in the unforced (unperturbed) setting. It is assumed that network weights are fixed to some values, for example, those attained after training. Based on classical results of the theory of absolute stability, we propose a new approach for stability analysis(More)
OBJECTIVE We explored the ability of specifically designed and trained recurrent neural networks (RNNs), combined with wavelet preprocessing, to discriminate between the electroencephalograms (EEGs) of patients with mild Alzheimer's disease (AD) and their age-matched control subjects. METHODS Twomin recordings of resting eyes-closed continuous EEGs (as(More)
The ball-and-beam problem is a benchmark for testing control algorithms. In the World Congress on Neural Networks, 1994, Prof. L. Zadeh proposed a twist to the problem, which, he suggested, would require a fuzzy logic controller. This experiment uses a beam, partially covered with a sticky substance, increasing the difficulty of predicting the ball's(More)
Combining multiple observation views has proven beneficial for tracking. In this paper, we cast tracking as a novel multi-task multi-view sparse learning problem and exploit the cues from multiple views including various types of visual features, such as intensity, color, and edge, where each feature observation can be sparsely represented by a linear(More)
We propose a technique for the design and analysis of adaptation algorithms in dynamical systems. The technique applies both to systems with conventional Lyapunov-stable target dynamics and to ones of which the desired dynamics around the target set is nonequilibrium and in general unstable in the Lyapunov sense. Mathematical models of uncertainties are(More)
Most object tracking methods only exploit a single quanti-zation of an image space: pixels, superpixels, or bounding boxes, each of which has advantages and disadvantages. It is highly unlikely that a common optimal quantization level, suitable for tracking all objects in all environments, exists. We therefore propose a hierarchical appearance(More)