Danijela Matic Vignjevic

Learn More
Afilopodium protrudes by elongation of bundled actin filaments in its core. However, the mechanism of filopodia initiation remains unknown. Using live-cell imaging with GFP-tagged proteins and correlative electron microscopy, we performed a kinetic-structural analysis of filopodial initiation in B16F1 melanoma cells. Filopodial bundles arose not by a(More)
In this study, the mechanisms of actin-bundling in filopodia were examined. Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma B16F1 cells revealed that fascin was specifically localized along the entire length of all filopodia, whereas other actin cross-linkers were not. RNA interference of fascin reduced the number(More)
Invasive cancer cells are believed to breach the basement membrane (BM) using specialized protrusions called invadopodia. We found that the crossing of a native BM is a three-stage process: invadopodia indeed form and perforate the BM, elongate into mature invadopodia, and then guide the cell toward the stromal compartment. We studied the remodeling of(More)
Cancer cells become metastatic by acquiring a motile and invasive phenotype. This step requires remodeling of the actin cytoskeleton and the expression of exploratory, sensory organelles known as filopodia. Aberrant beta-catenin-TCF target gene activation plays a major role in colorectal cancer development. We identified fascin1, a key component of(More)
Metastasis begins with the invasion of tumor cells into the stroma and migration toward the blood stream. Human pathology studies suggest that tumor cells invade collectively as strands, cords and clusters of cells into the stroma, which is dramatically reorganized during cancer progression. Cancer cells in intravital mouse models and in vitro display many(More)
Polymerization of actin filaments is necessary for both protrusion of the leading edge of crawling cells and propulsion of certain intracellular pathogens, and it is sufficient for generating force for bacterial motility in vitro. Motile intracellular pathogens are associated with actin-rich comet tails containing many of the same molecular components(More)
Invasion of cancer cells into surrounding tissues has a causal role in tumour progression and is an initial step in tumour metastasis. It requires cell migration, which is driven by the polymerisation of actin within two distinct structures, lamellipodia and filopodia, and attachment to the extracellular matrix through actin-rich adhesive structures.(More)
We report the development and characterization of an in vitro system for the formation of filopodia-like bundles. Beads coated with actin-related protein 2/3 (Arp2/3)-activating proteins can induce two distinct types of actin organization in cytoplasmic extracts: (1) comet tails or clouds displaying a dendritic array of actin filaments and (2) stars with(More)
Scaffold proteins form multiprotein complexes that are central to the regulation of intracellular signaling. The scaffold protein ezrin–radixin–moesin-binding phosphoprotein 50 (EBP50) is highly expressed at the plasma membrane of normal biliary epithelial cells and binds epidermal growth factor receptor (EGFR), a tyrosine kinase receptor with oncogenic(More)
Migrating cells nucleate focal adhesions (FAs) at the cell front and disassemble them at the rear to allow cell translocation. FAs are made of a multiprotein complex, the adhesome, which connects integrins to stress fibers made of mixed-polarity actin filaments [1-5]. Myosin II-driven contraction of stress fibers generates tensile forces that promote(More)