Daniil Kazantsev

Learn More
In this paper, we consider a limited data reconstruction problem for temporarily evolving computed tomography (CT), where some regions are static during the whole scan and some are dynamic (intensely or slowly changing). When motion occurs during a tomographic experiment one would like to minimize the number of projections used and reconstruct the image(More)
In this study, we aim to reconstruct single-photon emission computed tomography images using anatomical information from magnetic resonance imaging as a priori knowledge about the activity distribution. The trade-off between anatomical and emission data is one of the main concerns for such studies. In this work, we propose an anatomically driven anisotropic(More)
The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique.(More)
In this paper, we propose an iterative reconstruction algorithm which uses available information from one dataset collected using one modality to increase the resolution and signal-to-noise ratio of one collected by another modality. The method operates on the structural information only which increases its suitability across various applications.(More)
In this paper we present a new two-level iterative algorithm for tomographic image reconstruction. The algorithm uses a regularization technique, which we call edge-preserving Laplacian, that preserves sharp edges between objects while damping spurious oscillations in the areas where the reconstructed image is smooth. Our numerical simulations demonstrate(More)
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the(More)
Computed tomography has become a routine method for probing processes in porous media, and the use of neutron imaging is especially suited to the study of the dynamics of hydrogenous fluids, and of fluids in a highdensity matrix. In this paper we give an overview of recent developments in both instrumentation and methodology at the neutron imaging(More)