Learn More
The accumulation of assembled holoenzymes composed of regulatory D-type cyclins and their catalytic partner, cyclin-dependent kinase 4 (cdk4), is rate limiting for progression through the G1 phase of the cell cycle in mammalian fibroblasts. Both the synthesis and assembly of D-type cyclins and cdk4 depend upon serum stimulation, but even when both subunits(More)
Murine D type cyclins associate with a catalytic subunit (p34PSK-J3) with properties distinct from known cyclin-dependent kinases (cdks). Mouse p34PSK-J3 shows less than 50% amino acid identity to p34cdc2, p33cdk2, and p36cdk3, lacks a PSTAIRE motif, and does not bind to p13suc1. Cyclin D1-p34PSK-J3 complexes accumulate in macrophages during G1 and decline(More)
t(8;21) and t(16;21) create two fusion proteins, AML-1-ETO and AML-1-MTG16, respectively, which fuse the AML-1 DNA binding domain to putative transcriptional corepressors, ETO and MTG16. Here, we show that distinct domains of ETO contact the mSin3A and N-CoR corepressors and define two binding sites within ETO for each of these corepressors. In addition, of(More)
The AML-1-encoded transcription factor, AML-1B, regulates numerous hematopoietic-specific genes. Inappropriate expression of AML-1-family proteins is oncogenic in cell culture systems and in mice. To understand the oncogenic functions of AML-1, we established cell lines expressing AML-1B to examine the role of AML-1 in the cell cycle. DNA content analysis(More)
The E2F DNA binding activity consists of a heterodimer between E2F and DP family proteins, and these interactions are required for association of E2F proteins with pRb and the pRb-related proteins p107 and p130, which modulate E2F transcriptional activities. E2F-1 expression is sufficient to release fibroblasts from G0 and induce entry into S phase, yet it(More)
In adult rabbits, the CYP1A1 and CYP1A2 genes are expressed constitutively. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to elevations in both CYP1A1 and CYP1A2 gene products (S. T. Okino et al., 1985, Proc. Natl. Acad. Sci. USA 82, 5310-5314). In this report, we have characterized the rabbit CYP1A1 and CYP1A2 genes, and analyzed the pattern(More)
Interleukin 3 (IL-3)-dependent 32D.3 myeloid cells are an attractive model system for the analysis of hematopoietic cell growth, differentiation, and apoptosis. In these cells, E2F-3, E2F-4, and DP-1 are regulated by both IL-3 and granulocyte colony-stimulating factor (G-CSF), whereas E2F-1 was expressed at low levels and was not regulated by either(More)
Mutations in the retinoblastoma (pRb) tumor suppressor pathway including its cyclin-cdk regulatory kinases, or cdk inhibitors, are a hallmark of most cancers and allow unrestrained E2F-1 transcription factor activity, which leads to unregulated G1-to-S-phase cell cycle progression. Moderate levels of E2F-1 overexpression are tolerated in interleukin 3(More)
Neural cell membranes naturally contain a large amount of polyunsaturated fatty acid, but the functional significance of this is unknown. An increase in membrane polyunsaturation has been shown previously to affect the high-affinity transport systems for choline and glycine in cultured human Y79 retinoblastoma cells. To test the generality of membrane(More)
D-type cyclins are necessary and rate-limiting for G1 progression during the mammalian cell cycle. Cyclins D1, D2, and D3 are encoded by distinct genes and are expressed in proliferating cells in a lineage-specific manner. Monoclonal antibodies (mAbs) generated to bacterially produced recombinant D-type cyclins were able to react with the native proteins(More)