Danielle Biscaro Pedrolli

Learn More
Polygalacturonases are pectinolytic enzymes that catalyze the hydrolysis of the plant cell-wall pectin backbone. They are widely used in the food industry for juice extraction and clarification. Aspergillus giganteus produces one polygalacturonase (PG) on liquid Vogel medium with citrus pectin as the only carbon source. In specific applications, such as(More)
BACKGROUND The bacterium Bacillus subtilis, which is not a natural riboflavin overproducer, has been converted into an excellent production strain by classical mutagenesis and metabolic engineering. To our knowledge, the enhancement of riboflavin excretion from the cytoplasm of overproducing cells has not yet been considered as a target for (further) strain(More)
Pectinases are a big group of enzymes that break down pectic polysaccharides of plant tissues into simpler molecules like galacturonic acids. It has long been used to increase yields and clarity of fruit juices. Since pectic substances are a very complex macromolecule group, various pectinolytic enzymes are required to degrade it completely. These enzymes(More)
The aim of this study was to investigate some of the factors affecting pectin lyase (PL) production by an Aspergillus giganteus strain, and to characterize this pectinolytic activity excreted into the medium. The highest activities were obtained with orange waste, citrus pectin and galacturonic acid as carbon sources. The highest activity, using citrus(More)
A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of(More)
The non-pathogenic Gram-positive soil bacterium Streptomyces davawensis synthesizes the riboflavin (vitamin B(2)) analogs roseoflavin (RoF) and 8-demethyl-8-amino-riboflavin (AF). Both compounds are antibiotics. Notably, a number of other riboflavin analogs are currently under investigation with regard to the development of novel antiinfectives. As a first(More)
Streptomyces davawensis is the only organism known to synthesize the antibiotic roseoflavin, a riboflavin (vitamin B2) analog. Roseoflavin is converted to roseoflavin mononucleotide (RoFMN) and roseoflavin adenine dinucleotide in the cytoplasm of target cells. (Ribo-)Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria(More)
Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for biosynthesis and/or transport of riboflavin (rib genes). Cytoplasmic riboflavin is rapidly and almost completely converted to FMN by flavokinases. When cytoplasmic levels of FMN are sufficient ("high levels"), FMN binding to FMN riboswitches(More)
Polygalacturonases are part of the group of enzymes involved in pectin degradation. The aim of this work was to investigate some of the factors affecting polygalacturonase production by an Aspergillus giganteus strain and to characterize this pectinolytic activity. Several carbon sources, both pure substances and natural substrates, were tested in standing(More)
FMN riboswitches are genetic elements that, in many bacteria, control genes responsible for biosynthesis and/or transport of riboflavin (vitamin B2 ). We report that the Escherichia coli ribB FMN riboswitch controls expression of the essential gene ribB coding for the riboflavin biosynthetic enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (RibB; EC(More)