Daniele Trebbi

Learn More
We describe the application of complexity reduction of polymorphic sequences (CRoPS®) technology for the discovery of SNP markers in tetraploid durum wheat (Triticum durum Desf.). A next-generation sequencing experiment was carried out on reduced representation libraries obtained from four durum cultivars. SNP validation and minor allele frequency (MAF)(More)
Beta vulgaris genetic resources are essential for broadening genetic base of sugar beet and developing cultivars adapted to adverse environmental conditions. Wild beets (sea beets, B. vulgaris spp. maritima and their naturalized introgressions with cultivated beets known as ruderal beets) harbor substantial genetic diversity that could be useful for beet(More)
Morpho-physiological and molecular analysis were conducted to identify useful root indexes of sugar beet nutrient uptake capacity and productivity. Root architectural parameters, root elongation rate, sulfate uptake rate and glucose and fructose content in the root apex, traits involved in the plant response to sulfate stress, were evaluated in 18 sugar(More)
Thirty-nine sea beet [Beta vulgaris L. ssp. maritima (L.) Arcang.] accessions of the Adriatic coast were screened genetically and for their adaptive morpho-functional root traits in order to identify new sources of abiotic resistances for sugar beet breeding programs. Genetic diversity was evaluated with 21 microsatellites markers that identified 44(More)
The beet-cyst nematode (Heterodera schachtii Schmidt) is one of the major pests of sugar beet. The identification of molecular markers associated with nematode tolerance would be helpful for developing tolerant varieties. The aim of this study was to identify single nucleotide polymorphism (SNP) markers linked to nematode tolerance from the Beta vulgaris(More)
The productivity of sugar beet is strongly limited by several biotic stresses, among them rhizomania (induced by Beet necrotic yellow vein virus, BNYVV) which causes yield losses of 20–50% or more. The only way to control this disease is the use of resistant varieties. Sources of resistances have been found in the ancestor of the cultivated beets Beta(More)
Nutritional stress is one of the main limits to sugar beet yield. This study evaluated morphological and molecular responses of sugar beet to changes in sulfate availability. Morphological characteristics of the root system and the accumulation of microRNA395 (miR395) were examined in sulfate(S)-supplemented and S-deprived seedlings under hydroponic(More)
The aim of this study was to identify single nucleotide polymorphism (SNP) markers genetically linked to root elongation rate (RER) in sugar beet (Beta vulgaris L.). A population of 244 F3 individuals, obtained from the cross between lines L01 (a low RER) and L18 (a high RER), was phenotyped by measuring RER of 11-d-old seedlings grown in a hydroponic(More)
Sucrose is the economic product from sugar beet. Disease resistance is often available in low-sucrose genotypes and, prior to the deployment of such novel genes as available into the cultivated spectrum, selection for increased sucrose content is required during introgression. The objective of this work was to evaluate a relatively rapid and inexpensive(More)
Developmental phase transitions in the plant root system have not been well characterized. In this study we compared the dynamics of sucrose accumulation with changes in gene expression analyzed with cDNA-amplified fragment length polymorphism (AFLP) in the developing tap root of sugar beet (Beta vulgaris, L.) during the first 9 weeks after emergence (WAE).(More)
  • 1