Daniele Ludovici

Learn More
Most of past evaluations of fat-trees for on-chip interconnection networks rely on oversimplifying or even irrealistic architecture and traffic pattern assumptions, and very few layout analyses are available to relieve practical feasibility concerns in nanoscale technologies. This work aims at providing an in-depth assessment of physical synthesis(More)
—This paper proposes a built-in self-test/self-diagnosis procedure at start-up of an on-chip network (NoC). Concurrent BIST operations are carried out after reset at each switch, thus resulting in scalable test application time with network size. The key principle consists of exploiting the inherent structural redundancy of the NoC architecture in a(More)
—Customization of IP blocks in a multi-processor system-on-chip (MPSoC) is the historical approach to the cost-effective implementation of such systems. A recent trend consists of structuring a MPSoC into loosely coupled voltage and frequency islands to meet tight power budgets. In this context, synchronization between islands of synchronicity becomes a(More)
With the advent of Networks-on-Chip (NoCs), the interest for mesochronous synchronizers is again on the rise due to the intricacies of skew-controlled chip-wide clock tree distribution. Recently proposed schemes agree on a source synchronous design style with some form of ping-pong buffering to counter timing and metastability concerns. However, the(More)
This paper contributes to the maturity of the GALS NoC design practice by advocating for tight integration of GALS synchronization interfaces into NoC architecture building blocks. At the cost of re-engineering the input/output stages of NoC switches and network interfaces, this approach proves capable of materializing GALS NoCs with the same area and power(More)
—Regular multi-core processors are appearing in the embedded system market as high performance software pro-grammable solutions. The use of regular interconnect fabrics for them allows fast design time, ease of routing, predictability of electrical parameters and good scalability. k-ary n-mesh topologies are candidate solutions for these systems, borrowed(More)
Networks-on-chip need to survive to manufacturing faults in order to sustain yield. An effective testing and configuration strategy however implies two opposite requirements. One one hand, a fast and scalable built-in self-testing and self-diagnosis procedure has to be carried out concurrently at NoC switches. On the other hand, programming the NoC routing(More)
There is today little doubt on the fact that a high-performance and cost-effective Network-on-Chip can only be designed in 45nm and beyond under a relaxed synchronization assumption. In this direction, this paper focuses on a GALS system where the NoC and its end-nodes have independent clocks (unrelated in frequency and phase) and are synchronized via(More)