Learn More
In supercontinuum generation, various propagation effects combine to produce a dramatic spectral broadening of intense ultrashort optical pulses. With a host of applications, supercontinuum sources are often required to possess a range of properties such as spectral coverage from the ultraviolet across the visible and into the infrared, shot-to-shot(More)
Excitation of unbalanced-Bessel beams by a gradual increase of nonlinearity in a water sample outlines the achievement of the first ever observed quasimonochromatic wave packet that propagates stably for hundreds of Rayleigh lengths in a focusing and dispersive Kerr medium, i.e., in the absence of spectral broadening and conical emission. A modulational(More)
The ability to record images with extreme temporal resolution enables a diverse range of applications, such as fluorescence lifetime imaging, time-of-flight depth imaging and characterization of ultrafast processes. Recently, ultrafast imaging schemes have emerged, which require either long acquisition times or raster scanning and have a requirement for(More)
The precise observation of the angle-frequency spectrum of light filaments in water reveals a scenario incompatible with current models of conical emission (CE). Its description in terms of linear X-wave modes leads us to understand filamentation dynamics requiring a phase- and group-matched, Kerr-driven four-wave-mixing process that involves two highly(More)
Event horizons of astrophysical black holes and gravitational analogues have been predicted to excite the quantum vacuum and give rise to the emission of quanta, known as Hawking radiation. We experimentally create such a gravitational analogue using ultrashort laser pulse filaments and our measurements demonstrate a spontaneous emission of photons that(More)
Nonlinear losses accompanying self-focusing substantially impact the dynamic balance of diffraction and nonlinearity, permitting the existence of localized and stationary solutions of the 2D + 1 nonlinear Schrödinger equation, which are stable against radial collapse. These are featured by linear, conical tails that continually refill the nonlinear, central(More)
Measurements of the spatio-temporal and far-field profiles of ultrashort laser pulses experiencing conical emission, continuum generation, and beam filamentation in a Kerr medium outline the spontaneous formation of wave packets with X -like features, thus supporting recent numerical results [M. Kołesik, E. Wright, and J. Moloney, Phys. Rev. Lett. 92,(More)
We propose a new experimental technique, which allows for a complete characterization of ultrashort optical pulses both in space and in time. Combining the well-known Frequency-Resolved-Optical-Gating technique for the retrieval of the temporal profile of the pulse with a measurement of the near-field made with an Hartmann-Shack sensor, we are able to(More)
Low-frequency currents induced by ultrashort laser-driven ionization can emit extremely broadband, single-cycle terahertz pulses. We present a model that predicts a strong wavelength dependence of the THz emission in good agreement with our experimental study. This reveals that the combined effects of plasma currents rising proportionally to the square of(More)