Learn More
In supercontinuum generation, various propagation effects combine to produce a dramatic spectral broadening of intense ultrashort optical pulses. With a host of applications, supercontinuum sources are often required to possess a range of properties such as spectral coverage from the ultraviolet across the visible and into the infrared, shot-to-shot(More)
The ability to record images with extreme temporal resolution enables a diverse range of applications, such as fluorescence lifetime imaging, time-of-flight depth imaging and characterization of ultrafast processes. Recently, ultrafast imaging schemes have emerged, which require either long acquisition times or raster scanning and have a requirement for(More)
Excitation of unbalanced-Bessel beams by a gradual increase of nonlinearity in a water sample outlines the achievement of the first ever observed quasimonochromatic wave packet that propagates stably for hundreds of Rayleigh lengths in a focusing and dispersive Kerr medium, i.e., in the absence of spectral broadening and conical emission. A modulational(More)
We report the experimental observation of all-optical modulation of light in a graphene film. The graphene film is scanned across a standing wave formed by two counter-propagating laser beams in a Sagnac interferometer. Through a coherent absorption process the on-axis transmission is modulated with close to 80% efficiency. Furthermore, we observe(More)
The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great(More)
Solitons are of fundamental importance in photonics due to applications in optical data transmission and also as a tool for investigating novel phenomena ranging from light generation at new frequencies and wave-trapping to rogue waves. Solitons are also moving scatterers: they generate refractive index perturbations moving at the speed of light. Here we(More)
Frequency conversion by means of Kerr nonlinearity is one of the most common and exploited nonlinear optical processes in the UV, visible, IR, and mid-IR spectral regions. Here we show that wave mixing of an optical field and a terahertz wave can be achieved in diamond, resulting in the frequency conversion of the terahertz radiation either by sum- or(More)
We demonstrate the validity of the Shackled-frequency-resolved-optical-gating technique for the complete characterization, both in space and in time, of ultrashort optical pulses that present strong angular dispersion. Combining a simple imaging grating with a Hartmann-Shack sensor and standard frequency-resolved-optical-gating detection at a single spatial(More)
We numerically investigate the possibility to generate freely accelerating or decelerating pulses. In particular it is shown that acceleration along the propagation direction z may be obtained by a purely spatial modulation of an input Gaussian pulse in the form of finite-energy Bessel pulses with a cone angle that varies along the radial coordinate.We(More)