Learn More
Nuclear export of certain HIV-1 mRNAs requires an interaction between the viral Rev protein and the Rev response element (RRE), a structured element located in the Env region of its RNA genome. This interaction is an attractive target for both drug design and gene therapy, exemplified by RevM10, a transdominant negative protein that, when introduced into(More)
Since its inception in 1994, The RNA Modification Database (RNAMDB, http://rna-mdb.cas.albany.edu/RNAmods/) has served as a focal point for information pertaining to naturally occurring RNA modifications. In its current state, the database employs an easy-to-use, searchable interface for obtaining detailed data on the 109 currently known RNA modifications.(More)
The HIV-1 nucleocapsid (NC) protein is a small, basic protein containing two retroviral zinc fingers. It is a highly active nucleic acid chaperone; because of this activity, it plays a crucial role in virus replication as a cofactor during reverse transcription, and is probably important in other steps of the replication cycle as well. We previously(More)
Clerocidin (CL) is an effective topoisomerase II-poison, which has been shown to produce DNA depurination and strand breaks per se at the guanine (G) level. To elucidate the roles played by the different functional groups of CL in the reactivity towards nucleic acids, we investigated CL derivatives with key structural modifications. The derivatives were(More)
Clerocidin (CL) is a topoisomerase II poison, which cleaves DNA irreversibly at guanines (G) and reversibly at cytosines (C). Furthermore, the drug can induce enzyme-independent strand breaks at the G and C level. It has been previously shown that G-damage is induced by alkylation of the guanine N7, followed by spontaneous depurination and nucleic acid(More)
Bovine immunodeficiency virus Gag proteins were purified from virions, and their amino acid sequences and molecular masses were determined. The matrix, capsid, and nucleocapsid (MA, CA, and NC, respectively) and three smaller proteins (p2L, p3, and p2) were found to have molecular masses of 14.6, 24.6, and 7.3 and 2.5, 2.7, and 1.9 kDa, respectively. The(More)
Disrupting the interactions between human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein and structural elements of the packaging signal (Psi-RNA) could constitute an ideal strategy to inhibit the functions of this region of the genome leader in the virus life cycle. We have employed electrospray ionization (ESI) Fourier transform mass(More)
Fig. 1s: Ligand-SL3 binding curves. For the sake of clarity, only one representative curve is shown for each class of ligands: neomycin B („), ethidium bromide (z), mitoxantrone (▲), distamycin A (), and chlorotetracycline (‹). See Materials and Methods for conditions. Fig. 2s: Ligand-SL4 binding curves. For the sake of clarity, only one representative(More)
The interactions of archetypical nucleic acid ligands with the HIV-1 polypurine tract (PPT) RNA:DNA hybrid, as well as analogous DNA:DNA, RNA:RNA and swapped hybrid substrates, were used to probe structural features of the PPT that contribute to its specific recognition and processing by reverse transcriptase (RT). Results from intercalative and(More)
A new method for rapid purification and structural analysis of oligoribonucleotides of 19 and 20 nt is applied to RNA hairpins SL3 and SL2, which are stable secondary structures present on the psi recognition element of HIV-1. This approach uses ion-pairing reversed-phase liquid chromatography (IP-RPLC) to achieve the separation of the stem-loop from the(More)