Learn More
In this article, we present an account of the state of the art in acoustic scene classification (ASC), the task of classifying environments from the sounds they produce. Starting from a historical review of previous research in this area, we define a general framework for ASC and present different implementations of its components. We then describe a range(More)
This article deals with learning dictionaries for sparse approximation whose atoms are both adapted to a training set of signals and mutually incoherent. To meet this objective, we employ a dictionary learning scheme consisting of sparse approximation followed by dictionary update and we add to the latter a decorrelation step in order to reach a target(More)
This work considers the problem of learning an incoherent dictionary that is both adapted to a set of training data and incoherent so that existing sparse approximation algorithms can recover the sparsest representation. A new decorrelation method is presented that computes a fixed coherence dictionary close to a given dictionary. That step iterates(More)
This paper studies the disjointness of the time-frequency representations of simultaneously playing musical instruments. As a measure of disjointness, we use the approximate W-disjoint orthogonality as proposed by Yilmaz and Rickard [1], which (loosely speaking) measures the degree of overlap of different sources in the time-frequency domain. The motivation(More)
Assuming that a set of source signals is sparsely representable in a given dictionary, we show how their sparse recovery fails whenever we can only measure a convolved observation of them. Starting from this motivation, we develop a block coordinate descent method which aims to learn a convolved dictionary and provide a sparse representation of the observed(More)
Online social media platforms are opening up new opportunities to analyse human behaviour on an unprecedented scale. In some cases, the fast, cheap measurements of human behaviour gained from these platforms may offer an alternative to gathering such measurements using traditional, time consuming and expensive surveys. Here, we use geotagged photographs(More)
Humans are inherently mobile creatures. The way we move around our environment has consequences for a wide range of problems, including the design of efficient transportation systems and the planning of urban areas. Here, we gather data about the position in space and time of about 16 000 individuals who uploaded geo-tagged images from locations within the(More)
In this paper an advanced PID control architecture developed to minimize the head pressure of a visbreaking column is presented. The implemented control strategy has been designed through an advanced interconnection of PID controllers typically used in industrial processes: cascade control, feedforward control and override control. In order to correctly(More)
In this article we present the supervised iterative projections and rotations (s-ipr) algorithm, a method for learning discriminative incoherent subspaces from data. We derive s-ipr as a supervised extension of our previously proposed iterative projections and rotations (ipr) algorithm for incoherent dictionary learning, and we employ it to learn incoherent(More)