Daniela Steffens

Learn More
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. Nanotechnology has opened up by rapid advances in science and technology, creating new opportunities for advances in the fields of medicine, electronics, foods, and the environment. Nanoscale structures and(More)
Electrospun fibers are promising tissue engineering scaffolds that offer the cells an environment that mimics the native extracellular matrix. Fibers with different characteristics can be produced by the electrospinning technique according to the needs of the tissue to be repaired. In this review, the process of electrospinning was examined, providing a(More)
OBJECTIVES The aim of this study was to isolate and cultivate cells from the pulp of 7-day-cryopreserved intact deciduous human teeth and evaluate the effect of cryopreservation on dental pulp stem cell (DPSC) characteristics. DESIGN Twenty-six deciduous teeth were collected and allocated in two groups: immediate cell isolation (non-cryopreserved group)(More)
  • K. Mengel, D. Steffens
  • 2004
Rye-grass (Lolium perenne) is known to be a strong competitor to red clover (Trifolium pratense) for soil K+ under conditions of low K availability in the soil. The objective of this study was to clarify whether this competitive behaviour of the two species can be explained by root morphology. Total K+ uptake ofL. perenne andT. pratense was studied under(More)
Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell(More)
The objectives of this study are to isolate, cultivate, and characterize stem cells from the pulp of carious deciduous teeth (SCCD) and compare them to those retrieved from sound deciduous teeth (SHED—stem cells from human exfoliated deciduous teeth). Cells were obtained of dental pulp collected from sound (n = 10) and carious (n = 10) deciduous human(More)
The association of stem cells (SCs) with biomaterials promises to be the protagonist for future regenerative medicine in the treatment of tissue and organ lesions. Stem cells were cultivated in scaffolds constructed by the electrospinning technique, using poly-D,L-lactic acid (PDLLA) associated or not with Spirulina biomass (PDLLA/Sp), which has bioactive(More)
Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a(More)
The combination of mesenchymal stem cells (MSCs) and nanotechnology to promote tissue engineering presents a strategy for the creation of new substitutes for tissues. Aiming at the utilization of the scaffolds of poly-d,l-lactic acid (PDLLA) associated or not with Spirulina biomass (PDLLA/Sp) in skin wounds, MSCs were seeded onto nanofibers produced by(More)
The sterilization of scaffolds is an essential step for tissue engineering in vitro and, mainly, clinical biomaterial use. However, this process can cause changes in the structure and surface of the scaffolds. Therefore, the objective of this study was to investigate the effect of sterilization by ethanol, ultraviolet radiation (UVR) or antimicrobial(More)