Daniela P. Mesquita

Learn More
The present study focuses on predicting the concentration of intracellular storage polymers in enhanced biological phosphorus removal (EBPR) systems. For that purpose, quantitative image analysis techniques were developed for determining the intracellular concentrations of PHA (PHB and PHV) with Nile blue and glycogen with aniline blue staining. Partial(More)
Yarrowia lipolytica, a yeast strain with a huge biotechnological potential, capable to produce metabolites such as γ-decalactone, citric acid, intracellular lipids and enzymes, possesses the ability to change its morphology in response to environmental conditions. In the present study, a quantitative image analysis (QIA) procedure was developed for the(More)
In the last years there has been an increase on the research of the activated sludge processes, and mainly on the solid-liquid separation stage, considered of critical importance, due to the different problems that may arise affecting the compaction and the settling of the sludge. Furthermore, image analysis procedures are, nowadays considered to be an(More)
In recent years, a great deal of attention has been focused on the research of activated sludge processes, where the solid-liquid separation phase is frequently considered of critical importance, due to the different problems that severely affect the compaction and the settling of the sludge. Bearing that in mind, in this work, image analysis routines were(More)
The present study proposes an image analysis methodology for the identification of different types of disturbances in wastewater treatment activated sludge systems. Up to date, most reported image analysis methodologies have been used in activated sludge processes with the aim of filamentous bulking detection, however, other disturbances could be foreseen(More)
In activated sludge systems, the sludge settling ability is considered a critical step where filamentous bulking and biomass deflocculation are the most common problems, causing the reduction of the effluent quality. Furthermore, in recent years image processing techniques have been successfully used to elucidate the activated sludge morphology. Keeping(More)
Activated sludge systems are prone to be affected by changes in operating conditions leading to problems such as pinpoint flocs formation, filamentous bulking, dispersed growth, and viscous bulking. These problems are often related with the floc structure and filamentous bacteria contents. In this work, a lab-scale activated sludge system was operated(More)
Quantitative image analysis techniques have gained an undeniable role in several fields of research during the last decade. In the field of biological wastewater treatment (WWT) processes, several computer applications have been developed for monitoring microbial entities, either as individual cells or in different types of aggregates. New descriptors have(More)
BACKGROUND, AIM, AND SCOPE Fishery wastewater treatment can be compromised due to seasonal production. The use of sequencing batch reactors is not completely successful, despite flexibility being one of the principal advantages. Most research on activated sludge is performed using synthetic wastewater to ensure a stable and constant feed. The current work(More)
Different approaches using microscopy image analysis procedures were employed for characterization of activated sludge systems. The approaches varied mainly on the type of visualization and acquisition method used for collection of data. In this context, this study focused on the comparison of the two most common acquisition methods: bright field and(More)