Daniela Moll

Learn More
The mature surface layer (S-layer) protein SbsC of Bacillus stearothermophilus ATCC 12980 comprises amino acids 31-1099 and self-assembles into an oblique lattice type which functions as an adhesion site for a cell-associated high-molecular-mass exoamylase. To elucidate the structure-function relationship of distinct segments of SbsC, three N- and seven(More)
To understand the function of highly complex eukaryotic tissues like the human brain, in depth knowledge about cellular protein networks is required. Biomolecular interaction analysis (BIA), as a part of functional proteomics, aims to quantify interaction patterns within a protein network in detail. We used the cAMP dependent protein kinase (PKA) as a model(More)
Divercin V41 (DV41) is a class IIa bacteriocin produced by Carnobacterium divergens V41. This antilisterial peptide is homologous to pediocin PA-1 and contains two disulfide bonds. To establish the structure-activity relationships of this specific family of bacteriocin, chemical modifications and enzymatic hydrolysis were performed on DV41. Alteration of(More)
We have investigated the thermodynamic parameters and binding of a regulatory subunit of cAMP-dependent protein kinase (PKA) to its natural low-molecular-weight ligand, cAMP, and analogues thereof. For analysis of this model system, we compared side-by-side isothermal titration calorimetry (ITC) with surface plasmon resonance (SPR). Both ITC and SPR(More)
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and(More)
A novel fluorescent cAMP analog (8-[Pharos-575]- adenosine-3', 5'-cyclic monophosphate) was characterized with respect to its spectral properties, its ability to bind to and activate three main isoenzymes of the cAMP-dependent protein kinase (PKA-Iα, PKA-IIα, PKA-IIβ) in vitro, its stability towards phosphodiesterase and its ability to permeate into(More)
Functional proteomics aims to describe cellular protein networks in depth based on the quantification of molecular interactions. In order to study the interaction of adenosine-3',5'-cyclic monophosphate (cAMP), a general second messenger involved in several intracellular signalling networks, with one of its respective target proteins, the regulatory (R)(More)
  • 1