Daniela Kanyi

Learn More
Despite the large number of heparin and heparan sulfate binding proteins, the molecular mechanism(s) by which heparin alters vascular cell physiology is not well understood. Studies with vascular smooth muscle cells (VSMCs) indicate a role for induction of dual specificity phosphatase 1 (DUSP1) that decreases ERK activity and results in decreased cell(More)
It has become increasingly clear that stress-activated protein kinases have cytoplasmic substrates in addition to well-established transcription factor substrates in cell nuclei. The present study documented specific cytoplasmic locations of these enzymes in proliferating vascular cells. Immunofluorescent staining for active c-jun NH2-terminal kinase (JNK),(More)
Prostate-specific antigen (PSA), a serine endoprotease with chymotrypsin-like substrate specificity, is a marker used widely for detection of prostate cancer and other prostate diseases, catalyzing hydrolysis of the gel-forming proteins semenogelins I and II, which are synthesized and secreted by the seminal vesicle. In this study we report the use of two(More)
The ability of heparin to block proliferation of vascular smooth muscle cells has been well documented. It is clear that heparin treatment can decrease the level of ERK activity in vascular smooth muscle cells that are sensitive to heparin. In this study, the mechanism by which heparin induces decreases in ERK activity was investigated by evaluating the(More)
  • 1