Daniela Caldelari

Learn More
The principal immune mechanism against biotrophic pathogens in plants is the resistance (R)-gene-mediated defence. It was proposed to share components with the broad-spectrum basal defence machinery. However, the underlying molecular mechanism is largely unknown. Here we report the identification of novel genes involved in R-gene-mediated resistance against(More)
Fertility and flower development are both controlled in part by jasmonates, fatty acid-derived mediators produced via the activity of 13-lipoxygenases (13-LOXs). The Arabidopsis thaliana Columbia-0 reference genome is predicted to encode four of these enzymes and it is already known that one of these, LOX2, is dispensable for fertility. In this study, the(More)
Damage-inducible defenses in plants are controlled in part by jasmonates, fatty acid-derived regulators that start to accumulate within 30 s of wounding a leaf. Using liquid chromatography-tandem mass spectrometry, we sought to identify the 13-lipoxygenases (13-LOXs) that initiate wound-induced jasmonate synthesis within a 190-s timeframe in Arabidopsis(More)
Indoleamine 2,3-dioxygenase 2 (IDO2) is a potential therapeutic target for the treatment of diseases that involve immune escape such as cancer. In contrast to IDO1, only a very limited number of inhibitors have been described for IDO2 due to inherent difficulties in expressing and purifying a functionally active, soluble form of the enzyme. Starting from(More)
  • 1