Daniel Zemke

Learn More
Minocycline is a member of the tetracycline class of molecules with broad-spectrum antibiotic activity. The unique properties of minocycline result in increased tissue distribution when compared with the other tetracyclines. Of particular interest is the ability of minocycline to diffuse into the central nervous system at clinically effective levels. Aside(More)
Stroke is the third leading cause of death and the leading cause of adult disability in the United States. This review outlines the pathways that lead to cell death following stroke, and also summarizes the current literature on the phenomenon of ischemic tolerance. Ischemic tolerance is an endogenous neuroprotective mechanism by which neurons are protected(More)
BACKGROUND AND PURPOSE Carnosine is a naturally occurring dipeptide with multiple neuroprotective properties. In addition, it is well tolerated in high doses with minimal side effects. The purposes of this study were to determine whether carnosine is neuroprotective in permanent focal cerebral ischemia and to determine potential mechanisms of(More)
Carnosine (beta-alanyl-L-histidine) has been shown to exhibit neuroprotection in rodent models of cerebral ischemia. In the present study, we further characterized the effects of carnosine treatment in a mouse model of permanent focal cerebral ischemia and compared them with its related peptides anserine and N-acetylated carnosine. We also evaluated the(More)
Asiatic acid, a triterpenoid derivative from Centella asiatica, has shown biological effects such as antioxidant, antiinflammatory, and protection against glutamate- or beta-amyloid-induced neurotoxicity. We investigated the neuroprotective effect of asiatic acid in a mouse model of permanent cerebral ischemia. Various doses of asiatic acid (30, 75, or 165(More)
The term vasospasm is commonly used to describe constriction of cerebral blood vessels after subarachnoid hemorrhage which results in the restriction of blood flow and ischemia in affected portions of the brain. The pathophysiological changes that underlie vascular constriction after subarachnoid hemorrhage include changes within the vessel walls(More)
Subarachnoid hemorrhage affects millions of people and is a significant contributor to death and disability worldwide. The pathology of subarachnoid hemorrhage and its subsequent effects are not completely understood and few treatment options are available. Detailed studies of subarachnoid hemorrhage in humans can't be performed in living patients and the(More)
Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and(More)
  • 1