Daniel Weinreich

Learn More
The underlying mechanisms of neuropathic pain are poorly understood, and existing treatments are mostly ineffective. We recently demonstrated that antisense mediated "knock-down" of the sodium channel isoform, Na(V)1.8, reverses neuropathic pain behavior after L5/L6 spinal nerve ligation (SNL), implicating a critical functional role of Na(V)1.8 in the(More)
Peripheral sensory nerve terminals (PSNTs) have a dual function: reporting normal and abnormal sensations and releasing trophic factors to maintain the structure and function of epithelial cells. Although it is widely considered that intracellular Ca2+ plays a critical signaling role for both functions, the role of Ca2+ signaling has never been studied in(More)
The effect of reducing extracellular calcium concentration ([Ca(2+)](o)) on vagal afferent excitability was analyzed in a guinea pig isolated vagally innervated trachea-bronchus preparation. Afferent fibers were characterized as either having low-threshold, rapidly adapting mechanosensors (Adelta fibers) or nociceptive-like phenotypes (Adelta and C fibers).(More)
Near-infrared light therapy is an emerging neurostimulation technology, but its cellular mechanism of action remains unresolved. Using standard intracellular recording techniques, we observed that 5-10 ms pulses of 1889 nm light depolarized the membrane potential for hundreds of milliseconds in more than 85% of dorsal root ganglion and nodose ganglion(More)
The cell bodies of spinal afferents, dorsal root ganglion neurons, are depolarized several millivolts, and their probability of spiking increased when axons of neighboring somata in the same ganglion are electrically stimulated repetitively. This form of neural communication has been designated cross-depolarization (CD) and cross-excitation (CE). The(More)
In primary sensory afferent neurons, Ca2+ plays a vital role in the regulation of cellular processes including receptor and synaptic plasticity, neurotransmitter and trophic factor release and gene regulation. Current understanding of the mechanisms underlying Ca2+ homeostasis of primary sensory afferent neurons is mostly derived from studies on dorsal root(More)
Exogenously applied tachykinins produce no measurable electrophysiological responses in the somata of vagal afferent neurons [nodose ganglion neurons (NGNs)] isolated from naive guinea pigs. By contrast, after in vitro antigen challenge of nodose ganglia from guinea pigs immunized with chick ovalbumin, approximately 60% (53 of 89) of NGNs were depolarized(More)
Intracellular photorelease of caged D-myo-inositol 1,4,5-trisphosphate (IP(3)), caffeine application, and immunofluorescence confocal microscopy were used to determine that D-myo-inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs) coexist in rabbit vagal sensory nodose ganglion neurons (NGNs). ATP, an extracellular physiological(More)
Moore, Kimberly A., Akiva S. Cohen, Joseph P. Y. Kao, and is not restricted to vagal afferent neurons; analogous slow Daniel Weinreich. Ca-induced Ca release mediates a slow afterpotentials have been characterized in sympathetic, mypost-spike hyperpolarization in rabbit vagal afferent neurons. J. enteric, and CNS neurons (reviewed by Sah 1996).(More)
Genotypic fitness landscapes are constructed by assessing the fitness of all possible combinations of a given number of mutations. In the last years, several experimental fitness landscapes have been completely resolved. As fitness landscapes are high-dimensional, simple measures of their structure are used as statistics in empirical applications. Epistasis(More)