Learn More
Traditional control approaches fall well short of the necessary flexibility and efficiency needed to meet the commercial and military demands placed upon UAV swarms. Effective coordination of these swarms requires development of control strategies based on emergent behavior. We have developed a rule-based, decentralized control algorithm that relies on(More)
We present a new method for numerical propagations through Lyot-style coronagraphs using finite size occulting masks. Standard methods for coronagraphic simulations involve Fast Fourier Transforms (FFT) of very large arrays, and computing power is an issue for the design and tolerancing of coronagraphs on Extremely Large Telescopes (ELT) in order to handle(More)
The technique of flattening nested data parallelism combines all the independent operations in nested apply-to-all constructs and generates large amounts of potential parallelism for both regular and irregular expressions. However, the resulting data-parallel programs can have enormous memory requirements, limiting their utility. In this paper, we present(More)
− A collection of agents, faced with multiple tasks to perform, must effectively map agents to tasks in order to perform the tasks quickly with limited wasted resources. We propose a decentralized control algorithm based on synchronized random number generators to enact a cooperative task auction among the agents. The algorithm finds probabilistically(More)
–Current Mars exploration and science is limited to orbiters and areas close to original rover landing sites. Most of the places of geological interest lay many kilometers outside of suitable landing sites. In-situ resources such as wind can enable rovers to travel great distances on Mars while using little internal power. In this paper, a dynamic model of(More)
To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine.(More)
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared(More)