Daniel W. Palmer

Learn More
Traditional control approaches fall well short of the necessary flexibility and efficiency needed to meet the commercial and military demands placed upon UAV swarms. Effective coordination of these swarms requires development of control strategies based on emergent behavior. We have developed a rule-based, decentralized control algorithm that relies on(More)
The technique of flattening nested data parallelism combines all the independent operations in nested apply-to-all constructs and generates large amounts of potential parallelism for both regular and irregular expressions. However, the resulting data-parallel programs can have enormous memory requirements, limiting their utility. In this paper, we present(More)
− A collection of agents, faced with multiple tasks to perform, must effectively map agents to tasks in order to perform the tasks quickly with limited wasted resources. We propose a decentralized control algorithm based on synchronized random number generators to enact a cooperative task auction among the agents. The algorithm finds probabilistically(More)
–Current Mars exploration and science is limited to orbiters and areas close to original rover landing sites. Most of the places of geological interest lay many kilometers outside of suitable landing sites. In-situ resources such as wind can enable rovers to travel great distances on Mars while using little internal power. In this paper, a dynamic model of(More)