Daniel Vaulot

Learn More
The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 microm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40 degrees S to 40 degrees N latitudinal band of oceans and its occurrence at high density(More)
The novel dye SYBR Green I binds specifically to nucleic acids and can be excited by blue light (488-nm wavelength). Cell concentrations of prokaryotes measured in marine samples with this dye on a low-cost compact flow cytometer are comparable to those obtained with the UV-excited stain Hoechst 33342 (bis-benzimide) on an expensive flow cytometer with a(More)
Picoplankton--cells with a diameter of less than 3 microm--are the dominant contributors to both primary production and biomass in open oceanic regions. However, compared with the prokaryotes, the eukaryotic component of picoplankton is still poorly known. Recent discoveries of new eukaryotic algal taxa based on picoplankton cultures suggest the existence(More)
Phylogenetic relationships among members of the marine Synechococcus genus were determined following sequencing of the 16S ribosomal DNA (rDNA) from 31 novel cultured isolates from the Red Sea and several other oceanic environments. This revealed a large genetic diversity within the marine Synechococcus cluster consistent with earlier work but also(More)
A quantitative PCR (QPCR) assay based on the use of SYBR Green I was developed to assess the abundance of specific groups of picoeukaryotes in marine waters. Six primer sets were designed targeting four different taxonomic levels: domain (Eukaryota), division (Chlorophyta), order (Mamiellales) and genus (Bathycoccus, Micromonas, and Ostreococcus). Reaction(More)
Small cells dominate photosynthetic biomass and primary production in many marine ecosystems. Traditionally, picoplankton refers to cells < or =2 microm. Here we extend the size range of the organisms considered to 3 microm, a threshold often used operationally in field studies. While the prokaryotic component of picophytoplankton is dominated by two(More)
Picoplanktonic prasinophytes are well represented in culture collections and marine samples. In order to better characterize this ecologically important group, we compared the phylogenetic diversity of picoplanktonic prasinophyte strains available at the Roscoff Culture Collection (RCC) and that of nuclear SSU rDNA sequences from environmental clone(More)
Marine cyanobacteria of the genera Prochlorococcus and Synechococcus are important contributors to global primary production occupying a key position at the base of marine food webs. The genetically diverse nature of each genus is likely an important reason for their successful colonization of vast tracts of the world's oceans, a feature that has led to(More)
The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing Patrick J. Keeling*, Fabien Burki, Heather M. Wilcox, Bassem Allam, Eric E. Allen, Linda A. AmaralZettler, E. Virginia Armbrust, John M. Archibald, Arvind K. Bharti, Callum J. Bell,(More)
The class Prasinophyceae (Chlorophyta) contains several photosynthetic picoeukaryotic species described from cultured isolates. The ecology of these organisms and their contributions to the picoeukaryotic community in aquatic ecosystems have received little consideration. We have designed and tested eight new 18S ribosomal DNA oligonucleotide probes(More)