Daniel Tye Pettay

Learn More
Dinoflagellates in the genus Symbiodinium are among the most abundant and important group of eukaryotic microbes found in coral reef ecosystems. Recent analyses conducted on various host cnidarians indicated that Symbiodinium assemblages in the Caribbean Sea are genetically and ecologically diverse. In order to further characterize this diversity and(More)
Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a(More)
The Aiptasia-Symbiodinium symbiosis is a promising model for experimental studies of cnidarian-dinoflagellate associations, yet relatively little is known regarding the genetic diversity of either symbiotic partner. To address this, we collected Aiptasia from 16 localities throughout the world and examined the genetic diversity of both anemones and their(More)
Genetic data are rapidly advancing our understanding of various biological systems including the ecology and evolution of coral-algal symbioses. The fine-scale interactions between individual genotypes of host and symbiont remain largely unstudied and constitute a major gap in knowledge. By applying microsatellite markers developed for both host and(More)
Reef corals harbouring clade D Symbiodinium spp. (endosymbiotic dinoflagellates) appear more tolerant of environmental stress. As sea surface temperatures rise, symbioses involving Symbiodinium D may increase in prevalence. For this reason, eight polymorphic microsatellite loci were developed for clade D Symbiodinium. From the analysis of 132 samples(More)
Nine new polymorphic microsatellites were developed for Symbiodinium trenchi (sensu type D1a). These loci were tested on populations of S. trenchi from corals in Palau and 3–19 alleles were observed at each haploid locus with an average of 7 alleles. Many of the primer sets successfully amplified loci within other members of Symbiodinium clade D,(More)
A shift in the dominant Symbiodinium species within a coral colony may allow rapid ac climatization to environmental stress, provided that the new symbiont is better suited to prevailing conditions. In this study, the Symbiodinium diversity in Pocillopora corals was examined following a cold-water bleaching event in the Gulf of California. Individual(More)
Mutualistic symbioses between scleractinian corals and endosymbiotic dinoflagellates (Symbiodinium spp.) are the foundation of coral reef ecosystems. For many coral-algal symbioses, prolonged episodes of thermal stress damage the symbiont's photosynthetic capability, resulting in its expulsion from the host. Despite the link between photosynthetic(More)
Increasing ocean acidification (OA) and seawater temperatures pose significant threats to coral reefs globally. While the combined impacts of OA and seawater temperature on coral biology and calcification in corals have received significant study, research to date has largely neglected the individual and combined effects of OA and seawater temperature on(More)