Learn More
We have shown previously the existence of small, activity-dependent changes in intrinsic optical properties of cortex that are useful for optical imaging of cortical functional architecture. In this study we introduce a higher resolution optical imaging system that offers spatial and temporal resolution exceeding that achieved by most alternative imaging(More)
The second visual cortical area (V2) of the primate is composed of repeating thin, pale, and thick cytochrome oxidase stripes containing primarily color-selective, broad-band oriented, and disparity-selective cells, respectively. We have now examined topography in V2 with respect to these functional subdivisions. Our data suggest that there are multiple,(More)
A high spatial resolution optical imaging system was developed to visualize cerebral cortical activity in vivo. This method is based on activity-dependent intrinsic signals and does not use voltage-sensitive dyes. Images of the living monkey striate (VI) and extrastriate (V2) visual cortex, taken during visual stimulation, were analyzed to yield maps of the(More)
Anatomical studies in the visual cortex have shown the presence of long-range horizontal connections with clustered axonal collaterals, suggesting interactions over distances of several millimeters. We used cross-correlation analysis in cat striate cortex to detect interactions between cells over comparable distances. Using one cell as a reference, we(More)
The cytochrome oxidase-rich patches or blobs of the monkey striate cortex have been shown to contain cells that have unoriented receptive fields, many of which are color selective. We studied the functional organization of color opponency in the blob regions of the parafoveal representation of the visual cortex. We also examined the patterns of connectivity(More)
To examine the functional interactions between the color and form pathways in the primate visual cortex, we have examined the functional connectivity between pairs of color oriented and nonoriented V1 and V2 neurons in Macaque monkeys. Optical imaging maps for color selectivity, orientation preference, and ocular dominance were used to identify specific(More)
We located clusters of color-selective neurons in macaque striate cortex, as mapped with optical imaging and confirmed with electrophysiological recordings. By comparing responses to an equiluminant red/green stimulus versus a high-contrast luminance stimulus, we were able to reveal a patchy distribution of color selectivity. Other color imaging protocols,(More)
We have shown in the accompanying paper that optical imaging of macaque striate cortex reveals patches that are preferentially activated by equiluminant chromatic gratings compared with luminance gratings. These imaged color patches are highly correlated, although not always in one-to-one correspondence, with the cytochrome-oxidase (CO) blobs. In the(More)
PURPOSE To characterize the properties of stimulus-evoked retinal intrinsic signals and determine the underlying origins. METHODS Seven adult cats were anesthetized and paralyzed to maximize imaging stability. The retina was stimulated with a liquid crystal display (LCD) integrated into a modified fundus camera (Topcon, Tokyo, Japan). The LCD presented(More)