Daniel Sykes

Learn More
We have used time-resolved luminescence methods to study rates of photoinduced energy transfer (PEnT) from [M(bipy)3]2+ (M=Ru, Os) chromophores to Ln(III) ions with low-energy f-f states (Ln=Yb, Nd, Er) in d-f dyads in which the metal fragments are separated by a saturated -CH2CH2- spacer, a p-C6H4 spacer, or a p-(C6H4)2 spacer. The finding that d-->f PEnT(More)
Sensitised luminescence from lanthanide complexes offers many potential advantages in imaging and assay, particularly when coupled with time-gating protocols that can be used to gate out background signal. In this perspective, we discuss the routes by which lanthanide arrays and polymetallic d-f hybrids can be prepared by conventional synthesis and(More)
An extensive series of blue-luminescent iridium(III) complexes has been prepared containing two phenylpyridine-type ligands and one ligand containing two pyrazolylpyridine units, of which one is bound to Ir(III) and the second is pendant. Attachment of {Ln(hfac)(3)} (Ln = Eu, Gd; hfac = anion of 1,1,1,5,5,5,-hexafluoropentanedione) to the second(More)
An isophthalate-bearing DOTA monoamide derivative has been synthesised and used to prepare a family of lanthanide complexes. Luminescence and NMR studies in solution show that the predominant form of the complexes in solution is a mono-capped square antiprism about the lanthanide centre, in which a solvent molecule occupies the ninth coordination site. The(More)
The first example of cell imaging using two independent emission components from a dinuclear d/f complex is reported. A water-stable, cell-permeable Ir(III) /Eu(III) dyad undergoes partial Ir→Eu energy transfer following two-photon excitation of the Ir unit at 780 nm. Excitation in the near-IR region generated simultaneously green Ir-based emission and red(More)
A set of three potentially bridging ligands containing two tridentate chelating N,N',O-donor (pyrazole-pyridine-amide) donors separated by an o, m, or p-phenylene spacer has been prepared and their coordination chemistry with lanthanide(III) ions investigated. Ligand L(1) (p-phenylene spacer) forms complexes with a 2:3 M:L ratio according to the proportions(More)
A series of cyanide-bridged coordination networks has been prepared which contain [Ru(phen)(CN)4](2-) anions, Ln(III) cations, and additional oligopyridine ligands (1,10-phenanthroline, 2,2':6',2'''-terpyridine or 2,2'-bipyrimidine) which coordinate to the Ln(III) centres. Five structural types have been identified and examples of each type of structure are(More)
Luminescent iridium(iii) complex units bearing pendant 2,2'-bipyridyl-type binding sites can be used to generate Ir/Ln dyads in which the Ir(iii) luminophore acts as an energy donor to the lanthanide by the Dexter mechanism, generating sensitised emission in the visible (from Eu) or near-infrared (Nd, Yb) regions.