#### Filter Results:

#### Publication Year

1998

2003

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

- Zhaojun Bai, Daniel Skoogh
- 2003

A Krylov subspace based projection method is presented for model reduction of large scale bilinear systems. A reduced bilinear system is constructed in such a way that it matches a desired number of moments of multivariable transfer functions corresponding to the kernels of Volterra series representation of the original system. Applications to the… (More)

Rational Krylov is an extension of the Lanczos or Arnoldi eigenvalue algorithm where several shifts (matrix factorizations) are performed in one run. A variant has been developed, where these factoriza-tions are performed in parallel. It is shown how Rational Krylov can be used to nd a reduced order model of a large linear dynamical system. In Electrical… (More)

An implementation of a parallel rational Krylov method for the gen-eralised matrix eigenvalue problem is discussed. The implementation has been done on a MIMD computer and a cluster of workstations. The rational Krylov algorithm is an extension of the shift-and-invert Arnoldi method where several shifts are used to compute basis vectors for one subspace. In… (More)

- ‹
- 1
- ›