Daniel Segura

Learn More
Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have(More)
The Azotobacter vinelandii phbBAC genes encode the enzymes for poly-beta-hydroxybutyrate (PHB) synthesis. The phbR gene, which is located upstream of and in the opposite direction of phbBAC, encodes PhbR, a transcriptional activator which is a member of the AraC family of activators. Here we report that a mutation in phbR reduced PHB accumulation and(More)
Poly-(3-hydroxybutyrate) [P(3HB)] is a polyester synthesized as a carbon and energy reserve material by a wide number of bacteria. This polymer is characterized by its thermo-plastic properties similar to plastics derived from petrochemical industry, such as polyethylene and polypropylene. Furthermore, P(3HB) is an inert, biocompatible and biodegradable(More)
The lipids poly-β-hydroxybutyrate (PHB) and alkylresorcinols are the major metabolic products of Azotobacter vinelandii cysts. Cysts are formed in less than 0.01% of late stationary phase cells grown on sucrose. Culturing vegetative cells in n-butanol or β-hydroxybutyrate induces encystment. After induction of encystment, PHB rapidly accumulates in large(More)
The aim of this study was to characterize the influence of the aeration conditions on the production of PHB and its molecular mass in a mutant strain of Azotobacter vinelandii (OPN), which carries a mutation on ptsN, the gene encoding enzyme IIANtr, previously shown to increase the accumulation of PHB. Cultures of A. vinelandii wild-type strain OP and its(More)
Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. The two-component system GacS/GacA is required for alginate synthesis since a mutation in gacS or gacA significantly reduced the level of transcripts of algD, the gene encoding GDP-mannose dehydrogenase, a key enzyme of the alginate biosynthetic pathway. In many(More)
The ptsP, ptsO, and ptsN genes encode Enzyme I(Ntr), NPr, and enzyme IIA(Ntr) (IIA(Ntr)) proteins of the nitrogen-related phosphotransferase system. These proteins participate in a phosphoryl transfer chain in several bacteria, where IIA(Ntr) appears to be the terminal phosphoryl acceptor. Inactivation of the ptsP gene in Azotobacter vinelandii was(More)
Alginate is an industrially relevant linear copolymer composed of β-1,4-linked D-mannuronic acid and its C-5 epimer L-guluronic acid. The rheological and gel-forming properties of alginates depend on the molecular weight and the relative content of the two monomers. Alginate produced by Azotobacter vinelandii was shown to be degraded towards the end of the(More)
Upon encystment induction, Azotobacter vinelandii produces the phenolic lipids alkylresorcinols (ARs) that are structural components of the cysts. The enzymes responsible for the ARs synthesis are encoded in the arsABCD operon, whose expression is activated by ArpR. The transcription of arpR is initiated from an RpoS dependent promoter. The nitrogen-related(More)
Azotobacter vinelandii is a soil bacterium that undergoes differentiation to form cysts that are resistant to desiccation. Upon induction of cyst formation, the bacterium synthesizes alkylresorcinols that are present in cysts but not in vegetative cells. Alternative sigma factors play important roles in differentiation. In A. vinelandii, AlgU (sigma E) is(More)