Daniel Sanz-Merodio

Learn More
Purpose Reducing energy consumption in walking robots is an issue of great importance in field applications such as humanitarian demining so as to increase mission time for a given power supply. The purpose of this paper is to address the problem of improving energy efficiency in statically stable walking machines by comparing two leg, insect and mammal,(More)
The potential of lower-limb exoskeletons and powered orthoses in gait assistance applications for patients with locomotive disorders would have a terrific impact in the society of the near future. This paper presents the development and main features of a lower limb exoskeleton being developed as an active orthosis to allow a quadriplegic child to walk. As(More)
Many robotics applications require contact with the environment, from traditional pick and place task to legged locomotion. Nevertheless, to increase adaptability to different terrains it is necessary to know its contact properties. These properties can be known beforehand or extracted from contact forces. In this paper a practical evaluation using adaptive(More)
Quadriparesis, caused by a number of congenital and acquired neuropathologies, affects children with the symptoms of weakness and motor impairment in all four limbs. The physical treatment of this disease could be hypothetically improved by the use of wearable exoskeletons which would contribute to avoiding the side effects of the permanent sitting(More)
The field of exoskeletons and assistive orthotic devices is a multidisciplinary issue in the halfway between medicine and robotics. Within the robotic discipline, bipedal robot gaits are generated as a function of parameters such as stride length, foot clearance and body height. These features allow to adapt the gait to different surface characteristics.(More)