Daniel Rios

Learn More
Microfold (M) cells are phagocytic intestinal epithelial cells in the follicle-associated epithelium of Peyer's patches that transport particulate antigens from the gut lumen into the subepithelial dome. Differentiation of M cells from epithelial stem cells in intestinal crypts requires the cytokine receptor activator of NF-κB ligand (RANKL) and the(More)
In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial(More)
The salts [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2), [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)], [Pt(en)(2)][Au(CN)(2)](2), [Pt(en)(2)][Ag(CN)(2)](2), and [Pt(bipy)(2)][Au(CN)(2)](2) have been prepared by mixing solutions of salts containing the appropriate cation with solutions of K[Au(CN)(2)] or K[Ag(CN)(2)]. Because the platinum atom in the cation is(More)
Electrospray ionization of actinyl perchlorate solutions in H(2)O with 5% by volume of dimethylformamide (DMF) produced the isolatable gas-phase complexes, [An(VI)O(2)(DMF)(3)(H(2)O)](2+) and [An(VI)O(2)(DMF)(4)](2+), where An = U, Np, and Pu. Collision-induced dissociation confirmed the composition of the dipositive coordination complexes, and produced(More)
Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure,(More)
The following monopositive actinyl ions were produced by electrospray ionization of aqueous solutions of An(VI)O(2)(ClO(4))(2) (An = U, Np, Pu): U(V)O(2)(+), Np(V)O(2)(+), Pu(V)O(2)(+), U(VI)O(2)(OH)(+), and Pu(VI)O(2)(OH)(+); abundances of the actinyl ions reflect the relative stabilities of the An(VI) and An(V) oxidation states. Gas-phase reactions with(More)
We report the first transmission of solvent-coordinated dipositive plutonyl ion, Pu(VI)O(2)(2+), from solution to the gas phase by electrospray ionization (ESI) of plutonyl solutions in water/acetone and water/acetonitrile. ESI of plutonyl and uranyl solutions produced the isolable gas-phase complexes, [An(VI)O(2)(CH(3)COCH(3))(4,5,6)](2+),(More)
The uranyl moiety, UO2(2+), is ubiquitous in the chemistry of uranium, the most prevalent actinide. Replacing the strong uranium-oxygen bonds in uranyl with other ligands is very challenging, having met with only limited success. We report here uranyl oxo bond activation in the gas phase to form a terminal nitrido complex, a previously elusive(More)
Activation of uranyl(V) oxo bonds in the gas phase is demonstrated by reaction of U(16)O(2)(+) with H(2)(18)O to produce U(16)O(18)O(+) and U(18)O(2)(+). In contrast, neptunyl(V) and plutonyl(V) are comparatively inert toward exchange. Computed potential energy profiles (PEPs) reveal a lower yl oxo exchange transition state for uranyl(V)/water as compared(More)