Learn More
INTRODUCTION In the framework of the Cognitive Microscope (MICO) project, we have set up a contest about mitosis detection in images of H and E stained slides of breast cancer for the conference ICPR 2012. Mitotic count is an important parameter for the prognosis of breast cancer. However, mitosis detection in digital histopathology is a challenging problem(More)
Digital pathology represents one of the major evolutions in modern medicine. Pathological examinations constitute the gold standard in many medical protocols, and also play a critical and legal role in the diagnosis process. In the conventional cancer diagnosis, pathologists analyze biopsies to make diagnostic and prognostic assessments, mainly based on the(More)
CONTEXT According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. AIMS The aim is to investigate the various texture features and Hierarchical Model and X(More)
This paper proposes a Recurrent Radial Basis Function network (RRBFN) that can be applied to dynamic monitoring and prognosis. Based on the architecture of the conventional Radial Basis Function networks, the RRBFN have input looped neurons with sigmoid activation functions. These looped-neurons represent the dynamic memory of the RRBF, and the Gaussian(More)
Colorectal adenocarcinoma originating in intestinal glandular structures is the most common form of colon cancer. In clinical practice, the morphology of intestinal glands, including architectural appearance and glandular formation, is used by pathologists to inform prognosis and plan the treatment of individual patients. However, achieving good(More)
Histopathological examination is a powerful standard for the prognosis of critical diseases. But, despite significant advances in high-speed and high-resolution scanning devices or in virtual exploration capabilities, the clinical analysis of whole slide images (WSI) largely remains the work of human experts. We propose an innovative platform in which(More)
Accurate counting of mitosis in breast cancer histopathology plays a critical role in the grading process. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. This work aims at improving the accuracy of mitosis detection by selecting the color channels that better capture the statistical and morphological(More)
Scoring the nuclear pleomorphism in histopathological images is a standard clinical practice for the diagnosis and prognosis of breast cancer. It relies highly on the experience of the pathologists. In a large hospital, one pathologist may have to evaluate more than a hundred cases per day, which is a very tedious and time-consuming task. Thus, it is(More)
Breast cancer grading of histopathological images is the standard clinical practice for the diagnosis and prognosis of breast cancer development. In a large hospital, a pathologist typically handles 100 grading cases per day, each consisting of about 2000 image frames. It is, therefore, a very tedious and time-consuming task. This paper proposes a method(More)
Bio-inspired computer vision is an emerging field. It aims to reproduce the capabilities of biological vision systems, eventually to simulate the visual functions for various purposes. In this paper, we propose a bio-inspired computer visual system using Graphical Processing Unit (GPU), and its application on breast cancer prognosis. The system extracts(More)