Daniel R Lorey

Learn More
PURPOSE There is a clear need for a technique that provides subcellular locations of fluorine and boron atoms from fluorinated neutron capture agents because positron emission tomography is being tested as a tool for providing tumor boron concentrations in boron neutron capture therapy. EXPERIMENTAL DESIGN Ion microscopy was used in combination with(More)
A secondary ion mass spectrometry (SIMS) based isotopic imaging technique was used for studies of i/ total calcium stored in cancerous and normal cell lines and ii/ intracellular chemical composition (total K, Na, and Ca) in relation to DNA staining patterns in taxol-treated breast cancer cells. A Cameca IMS-3f ion microscope with 0.5 microm spatial(More)
Boron measurements at subcellular scale are essential in boron neutron capture therapy (BNCT) of cancer as the nuclear localization of boron-10 atoms can enhance the effectiveness of killing individual tumour cells. Since tumours contain a heterogeneous population of cells in interphase as well as in the M phase (mitotic division) of the cell cycle, it is(More)
A co-culture, cryogenic SIMS methodology is presented for the quantitative analysis of cell type-dependent accumulation of boron delivered by BPA-F and BSH, two clinically approved drugs used in boron neutron capture therapy of cancer. T98G human glioblastoma cells were co-cultured with morphologically different normal LLC-PK1 epithelial cells or GM3348(More)
BACKGROUND Selective accumulation of boron-10 isotope in the nuclei of cancer cells is pivotal to the success of Boron Neutron Capture Therapy (BNCT). Sophisticated microanalytical techniques are needed for checking the selectivity and boron delivery characteristics of experimental BNCT drugs. The present study employs a secondary ion mass spectrometry(More)
  • 1