Daniel R. Lewis

Learn More
A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K+ channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K+-uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of the(More)
Nitric oxide (NO) is considered a key regulator of plant developmental processes and defense, although the mechanism and direct targets of NO action remain largely unknown. We used phenotypic, cellular, and genetic analyses in Arabidopsis thaliana to explore the role of NO in regulating primary root growth and auxin transport. Treatment with the NO donors(More)
A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K 1 channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K 1 -uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of(More)
Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects(More)
Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without(More)
We used genetic and molecular approaches to identify mechanisms by which the gaseous plant hormone ethylene reduces lateral root formation and enhances polar transport of the hormone auxin. Arabidopsis thaliana mutants, aux1, lax3, pin3 and pin7, which are defective in auxin influx and efflux proteins, were less sensitive to the inhibition of lateral root(More)
Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect(More)
Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport(More)
Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and(More)
This protocol allows the measurement of auxin transport in roots, hypocotyls and inflorescences of Arabidopsis thaliana plants by examining transport of radiolabeled auxin or movement of an auxin-induced gene expression signal. The protocol contains four stages: seedling growth, auxin application, a transport period of variable length, and quantification of(More)