Learn More
The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models(More)
By focusing on time sequences of basin-average and global-average upper ocean temperature (i.e., from 40øS to 60øN) we find temperatures responding to changing solar irradiance in three separate frequency bands with periods of >100 years, 18-25 years, and 9-13 years. Moreover, we find them in two different data sets, that is, surface marine weather(More)
Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused(More)
The highly variable timing of streamflow in snowmelt-dominated basins across western North America is an important consequence, and indicator, of climate fluctuations. Changes in the timing of snowmelt-derived streamflow from 1948 to 2002 were investigated in a network of 302 western North America gauges by examining the center of mass for flow, spring(More)
To investigate possible future climate changes in California, a set of climate change model simulations was selected and evaluated. From the IPCC Fourth Assessment, simulations of twenty-first century climates under a B1 (low emissions) and an A2 (a medium-high emissions) emissions scenarios were evaluated, along with occasional comparisons to the A1fi(More)
Observations have shown that the hydrological cycle of the western United States changed significantly over the last half of the 20th century. We present a regional, multivariable climate change detection and attribution study, using a high-resolution hydrologic model forced by global climate models, focusing on the changes that have already affected this(More)
Western United States forest wildfire activity is widely thought to have increased in recent decades, but surprisingly, the extent of recent changes has never been systematically documented. Nor has it been established to what degree climate may be driving regional changes in wildfire. Much of the public and scientific discussion of changes in western(More)
| T he number and extent of wildfires in the western United States each season are driven by natural factors such as fuel availability, temperature, precipitation , wind, humidity, and the location of lightning strikes, as well as anthropogenic factors. It is well known that climate fluctuations significantly affect these natural factors, and thus the(More)
  • Daniel R Cayan, Amy L Luers, Guido Franco, Michael Hanemann, Bart Croes, Edward Vine +5 others
  • 2007
In response to an Executive Order by California Governor Schwarzenegger, an evaluation of the implications to California of possible climate changes was undertaken using a scenario-based approach. The " Scenarios Project " investigated projected impacts of climate change on six sectors in the California region. The investigation considered the early, middle(More)