Learn More
Personal mobile devices are increasingly equipped with the capability to sense the physical world (through cameras, microphones, and accelerometers, for example) and the, network world (with Wi-Fi and Bluetooth interfaces). Such devices offer many new opportunities for cooperative sensing applications. For example, users' mobile phones may contribute data(More)
Opportunistic sensing allows applications to " task " mobile devices to measure context in a target region. For example, one could leverage sensor-equipped vehicles to measure traffic or pollution levels on a particular street, or users' mobile phones to locate (Bluetooth-enabled) objects in their neighborhood. In most proposed applications, context reports(More)
We describe AnonySense, a privacy-aware system for realizing pervasive applications based on collaborative, opportunistic sensing by personal mobile devices. AnonySense allows applications to submit sensing tasks to be distributed across participating mobile devices, later receiving verified, yet anonymized, sensor data reports back from the field, thus(More)
We propose a simple active method for discovering facts about the chipset, the firmware or the driver of an 802.11 wireless device by observing its responses (or lack thereof) to a series of crafted non-standard or malformed 802.11 frames. We demonstrate that such responses can differ significantly enough to distinguish between a number of popular chipsets(More)
Modeling human behavior requires vast quantities of accurately labeled training data, but for ubiquitous people-aware applications such data is rarely attainable. Even researchers make mistakes when labeling data, and consistent, reliable labels from low-commitment users are rare. In particular, users may give identical labels to activities with(More)
  • 1