Learn More
The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect(More)
The surfaces of the infected erythrocyte (IE) and the merozoite, two developmental stages of malaria parasites, expose antigenic determinants to the host immune system. We report on surface-associated interspersed genes (surf genes), which encode a novel polymorphic protein family, SURFINs, present on both IEs and merozoites. A SURFIN expressed in 3D7(More)
Giardia lamblia is a protozoan parasite infecting the upper mammalian small intestine. Infection relies upon the ability of the parasite to attach to the intestine via a unique cytoskeletal organelle, the ventral disk. We determined the composition and structure of the disk throughout the life cycle of the parasite and identified a new disk protein, SALP-1.(More)
The parasitic protozoan Giardia lamblia is a worldwide cause of diarrhea, but the mechanism of disease remains elusive. The parasite colonizes the small intestinal epithelium, known to be a sensor for the presence of enteric pathogens, without invading or causing severe inflammation. In this study we investigated the epithelial cell response to G. lamblia.(More)
Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16x coverage(More)
We quantified mRNA abundance from 10 stages in the Giardia lamblia life cycle in vitro using Serial Analysis of Gene Expression (SAGE). 163 abundant transcripts were expressed constitutively. 71 transcripts were upregulated specifically during excystation and 42 during encystation. Nonetheless, the transcriptomes of cysts and trophozoites showed major(More)
Previous studies have reported the increased sensitivity of PCR targeting AF146527 over that of PCR targeting the B1 gene for diagnosis of toxoplasmosis. The present study suggests that the AF146527 element was absent in 4.8% of human Toxoplasma gondii-positive samples tested. The data argue that the B1 gene may be the preferred diagnostic target.
During encystation Giardia trophozoites secrete a fibrillar extracellular matrix of glycans and cyst wall proteins on the cell surface. The cyst wall material is accumulated in encystation-specific vesicles (ESVs), specialized Golgi-like compartments generated de novo, after export from the endoplasmic reticulum (ER) and before secretion. These large(More)
The ability of Giardia lamblia to undergo two distinct differentiations in response to physiologic stimuli is central to its pathogenesis. The giardial cytoskeleton changes drastically during encystation and excystation. However, the signal transduction pathways mediating these transformations are poorly understood. We tested the hypothesis that PP2A, a(More)