Learn More
OBJECTIVE Despite extensive evidence for genetic susceptibility to diabetic nephropathy, the identification of susceptibility genes and their variants has had limited success. To search for genes that contribute to diabetic nephropathy, a genome-wide association scan was implemented on the Genetics of Kidneys in Diabetes collection. RESEARCH DESIGN AND(More)
It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A carboxylase beta (ACACB) as a candidate for a susceptibility to(More)
CONTEXT Novel type 2 diabetes mellitus (T2DM) susceptibility loci, identified through genome-wide association studies (GWAS), have been replicated in many European and Japanese populations. However, the association in other East Asian populations is less well characterized. OBJECTIVE To examine the effects of SNPs in CDKAL1, CDKN2A/B, IGF2BP2, HHEX,(More)
The main hallmark of diabetic nephropathy is elevation in urinary albumin excretion. We performed a genome-wide linkage scan in 63 extended families with multiple members with type II diabetes. Urinary albumin excretion, measured as the albumin-to-creatinine ratio (ACR), was determined in 426 diabetic and 431 nondiabetic relatives who were genotyped for 383(More)
The intestinal fatty-acid binding protein-2 (FABP2) gene codes a protein responsible for the absorption of long-chain fatty acids. To test whether FABP2 is a candidate gene for renal disease in patients with type 2 diabetes, a functional A54T polymorphism was genotyped in 1,042 Brazilians with type 2 diabetes. Patients were classified as having(More)
Glutamine-fructose-6-phosphate transaminase 1 (GFAT) is the rate-limiting enzyme of the hexosamine pathway that has been implicated in the pathogenesis of diabetic nephropathy. As such, we hypothesized that GFPT1, which encodes for GFAT, may confer genetic susceptibility to this complication among Caucasians. Screening of all known functional regions of(More)
Evaluating the potential genetic components of complex disease will likely be aided through the use of dense polymorphism maps. Previously, we reported evidence for linkage with diabetic nephropathy on chromosome 3q in a region encompassing the type 1 angiotensin II receptor (AGTR1) gene. To further investigate any role for this gene in disease onset, we(More)
A polymorphism in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 gene (ENPP1) (previously known as PC-1), resulting in an amino acid change from lysine to glutamine at codon 121 (K121Q), is associated with insulin resistance. A small follow-up study of patients with type 1 diabetes and proteinuria found that renal function declines more rapidly in(More)
Elevation of intracellular glucose in mesangial cells as mediated by GLUT1 may be important in initiating cellular mechanisms that cause diabetic nephropathy. To determine whether DNA sequence differences in GLUT1 confer susceptibility to this complication, single-nucleotide polymorphisms (SNPs) in this gene were examined using a large case-control study.(More)
Using a large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese type 2 diabetic patients, we have identified a gene encoding neurocalcin delta (NCALD) as a candidate for a susceptibility gene to diabetic nephropathy; the landmark SNP was found in the 3' UTR of NCALD (rs1131863: exon 4 +1340 A vs. G, P = 0.00004, odds(More)